Testing of a new Yb:YAG fiber laser system for the removal of graphic vandalism from marble

Author:

Suzuki Amelia,Riminesi Cristiano,Ricci Marilena,Vettori Silvia,Salvadori Barbara

Abstract

AbstractGraphic vandalism causes detrimental effects on architectural stone surfaces. Among the cleaning methods developed in the last decades, laser cleaning showed considerable effectiveness but the available equipment still lacks full adaptability for the use on site, while the cleaning process is time-consuming for the site work requirements. In this paper, the feasibility of a fiber laser operating at 1064 nm (Yb:YAG) at high repetition rate (kHz) for the removal of vandal graffiti from marble is investigated, as it is potentially suitable for cleaning of large surfaces. Indeed, this device exploits a scan system covering a wider area than that of solid state lasers, while maintaining excellent portability. Evaluation of the cleaning procedure on a selection of spray paints and felt-tip permanent markers applied on marble mock-ups is carried out with a multimodal approach (optical microscopy combined with surface pattern reconstruction, colour monitoring, Fourier Transform Infrared spectroscopy in external reflection and ATR mode, Thin Layer Chromatography, Raman spectroscopy, thermal monitoring, scanning electron microscopy). Ablation and thermal effects are observed varying the laser setting and the type of paint layer, with repetition rate showing a strong impact on the type of interaction. Overall, best cleaning procedures are achieved for the thinning of the black marker and the removal of the black spray paint. Some residues on the best results were observed, suggesting that the laser needs to be integrated with a second step of chemical cleaning. This study, focused on graffiti removal, shows that fiber laser can be a useful tool for cleaning of large monumental surfaces. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3