Machine learning based potentiating impacts of 12-lead ECG for classifying paroxysmal versus non-paroxysmal atrial fibrillation

Author:

Kim Sungsoo,Kwon Sohee,Markey Mia K.,Bovik Alan C.,Hong Sung-Hwi,Kim JunYong,Hwang Hye Jin,Joung Boyoung,Pak Hui-Nam,Lee Moon-Hyeong,Park JunbeomORCID

Abstract

Abstract Background Conventional modality requires several days observation by Holter monitor to differentiate atrial fibrillation (AF) between Paroxysmal atrial fibrillation (PAF) and Non-paroxysmal atrial fibrillation (Non-PAF). Rapid and practical differentiating approach is needed. Objective To develop a machine learning model that observes 10-s of standard 12-lead electrocardiograph (ECG) for real-time classification of AF between PAF versus Non-PAF. Methods In this multicenter, retrospective cohort study, the model training and cross-validation was performed on a dataset consisting of 741 patients enrolled from Severance Hospital, South Korea. For cross-institutional validation, the trained model was applied to an independent data set of 600 patients enrolled from Ewha University Hospital, South Korea. Lasso regression was applied to develop the model. Results In the primary analysis, the Area Under the Receiver Operating Characteristic Curve (AUC) on the test set for the model that predicted AF subtype only using ECG was 0.72 (95% CI 0.65–0.80). In the secondary analysis, AUC only using baseline characteristics was 0.53 (95% CI 0.45–0.61), while the model that employed both baseline characteristics and ECG parameters was 0.72 (95% CI 0.65–0.80). Moreover, the model that incorporated baseline characteristics, ECG, and Echocardiographic parameters achieved an AUC of 0.76 (95% CI 0.678–0.855) on the test set. Conclusions Our machine learning model using ECG has potential for automatic differentiation of AF between PAF versus Non-PAF achieving high accuracy. The inclusion of  Echocardiographic parameters further increases model performance. Further studies are needed to clarify the next steps towards clinical translation of the proposed algorithm.

Funder

Korean Heart Rhythm Society

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3