Exploring a rhizobium to fix nitrogen in non-leguminous plants by using a tumor-formation root pathogen

Author:

Zhao Ying,Gao Lixia,Gao Zhixiao,Tian Binnian,Chen Tao,Xie Jiatao,Cheng Jiasen,Fu Yanping,Li Youguo,Xiao Shunyuan,Bisseling Ton,Jiang DaohongORCID

Abstract

AbstractOver 110 million tons of nitrogen fertilizer every year is used for crop production. Scientists have dreamed of enabling rhizobial nitrogen fixation in non-leguminous crops to mitigate the increasing demand for nitrogen fertilizer. However, despite decades of research, rhizobial nitrogen fixation in non-host plants has not been demonstrated. Here, we reported that an N-fixing rhizobium and a clubroot pathogen Plasmodiophora brassicae exhibited a synergistic effect on fixing nitrogen in cruciferous plants. Rhizobia were found to invade P. brassicae-infected rapeseed (Brassica napus) roots in the field. The colonization of rhizobium on rapeseed roots was confirmed by co-inoculating Mesorhizobium huakuii with P. brassicae under controlled laboratory conditions. M. huakuii infection could alleviate clubroot symptoms and promote the growth of diseased rapeseeds. M. huakuii could fix nitrogen in P. brassicae-infected plants based on the results of 15N isotope dilution tests. The expression of homologs of legume genes required for symbiosis and early-nodulin genes was significantly upregulated in Arabidopsis during early infection by P. brassicae. More importantly, M. huakuii could even fix nitrogen in P. brassicae-resistant rapeseed cultivar and promote plant growth when co-inoculated with P. brassicae. Our findings provide a new avenue to understand the interaction of rhizobia with non-host plants, stimulate the exploration of fixing nitrogen in non-leguminous plants by nitrogen-fixing rhizobia, and develop a strategy for both disease control and nitrogen fixation on non-host crops.

Funder

Earmarked Fund for China Agriculture Research System

Fundamental Research Funds for the Central Universities

Wuhan Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3