Abstract
AbstractWhen uncorrelated signals are incident on a uniform linear array, the array covariance matrix is of the Toeplitz form. An adaptive beamforming method is proposed based on the signal-plus-interference (SI) subspace via the Toeplitz rectification of the sample matrix. The rectified matrix is shown to be more accurate in a norm sense than the modified matrix according to the centro-Hermitian property. Since the former also is centro-Hermitian we can efficiently obtain its eigen-decomposition from a real matrix and then the weight vector in the estimated SI subspace. The proposed method, showing robustness to pointing errors, is not only computationally efficient but also very quickly converges to the optimum performance as demonstrated in the simulation.
Publisher
Springer Science and Business Media LLC