Iterative 2D sparse signal reconstruction with masked residual updates for automotive radar interference mitigation

Author:

Chen ShengyiORCID,Stockel Philipp,Taghia Jalal,Kühnau Uwe,Martin Rainer

Abstract

AbstractCompressive sensing has attracted considerable attention in automotive radar interference mitigation. However, these algorithms usually cannot be applied directly to commercial automotive radar as most of them are computationally intense. In this paper, we therefore introduce a computationally efficient two-dimensional masked residual updates (2D MRU) compressive sensing framework. By utilizing the sparsity of the beat signal in the frequency domain, the range-Doppler (RD) spectrum can be reconstructed with the help of undistorted samples in the beat signal. Unlike the other schemes, where a 2D signal measurement is vectorized into a 1D signal, the proposed 2D MRU can directly take a 2D signal measurement and reconstruct the corresponding RD spectrum. Furthermore, the 2D MRU framework can be easily integrated into well-known optimization schemes such as basis pursuit, iterative hard thresholding, iterative soft thresholding, orthogonal matching pursuit, and approximate message-passing algorithm. In addition to the standard iterative thresholding algorithms, we propose a novel prior-model-based iterative thresholding method to further reduce the computation time and reconstruction error. Theoretical analysis shows that the proposed framework can successfully reconstruct the RD spectrum with high probability. Moreover, numerical experiments demonstrate the superiority of the proposed framework in terms of computational complexity.

Funder

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3