The proteome of the blood–brain barrier in rat and mouse: highly specific identification of proteins on the luminal surface of brain microvessels by in vivo glycocapture

Author:

Tremblay Tammy-Lynn,Alata Wael,Slinn Jacqueline,Baumann Ewa,Delaney Christie E.,Moreno Maria,Haqqani Arsalan S.,Stanimirovic Danica B.,Hill Jennifer J.

Abstract

Abstract Background The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood–brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins. Methods Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture. This workflow relies on the oxidation of glycans present on the luminal vessel surface via perfusion of a mild oxidizing agent, followed by subsequent isolation of glycoproteins by covalent linkage of their oxidized glycans to hydrazide beads. Mass spectrometry-based identification of the isolated proteins enables high-confidence identification of endothelial cell surface proteins in rats and mice. Results Using the developed workflow, 347 proteins were identified from the BBB in rat and 224 proteins in mouse, for a total of 395 proteins in both species combined. These proteins included many proteins with transporter activity (73 proteins), cell adhesion proteins (47 proteins), and transmembrane signal receptors (31 proteins). To identify proteins that are enriched in vessels relative to the entire brain, we established a vessel-enrichment score and showed that proteins with a high vessel-enrichment score are involved in vascular development functions, binding to integrins, and cell adhesion. Using publicly-available single-cell RNAseq data, we show that the proteins identified by in vivo glycocapture were more likely to be detected by scRNAseq in endothelial cells than in any other cell type. Furthermore, nearly 50% of the genes encoding cell-surface proteins that were detected by scRNAseq in endothelial cells were also identified by in vivo glycocapture. Conclusions The proteins identified by in vivo glycocapture in this work represent the most complete and specific profiling of proteins on the luminal BBB surface to date. The identified proteins reflect possible targets for the development of antibodies to improve the crossing of therapeutic proteins into the brain and will contribute to our further understanding of BBB transport mechanisms.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms and Methods for Evaluating Drug Delivery via Transcytosis to the Brain;AAPS Introductions in the Pharmaceutical Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3