Eye-tracking and artificial intelligence to enhance motivation and learning

Author:

Sharma Kshitij,Giannakos Michail,Dillenbourg Pierre

Abstract

AbstractThe interaction with the various learners in a Massive Open Online Course (MOOC) is often complex. Contemporary MOOC learning analytics relate with click-streams, keystrokes and other user-input variables. Such variables however, do not always capture users’ learning and behavior (e.g., passive video watching). In this paper, we present a study with 40 students who watched a MOOC lecture while their eye-movements were being recorded. We then proposed a method to define stimuli-based gaze variables that can be used for any kind of stimulus. The proposed stimuli-based gaze variables indicate students’ content-coverage (in space and time) and reading processes (area of interest based variables) and attention (i.e., with-me-ness), at the perceptual (following teacher’s deictic acts) and conceptual levels (following teacher discourse). In our experiment, we identified a significant mediation effect of the content coverage, reading patterns and the two levels of with-me-ness on the relation between students’ motivation and their learning performance. Such variables enable common measurements for the different kind of stimuli present in distinct MOOCs. Our long-term goal is to create student profiles based on their performance and learning strategy using stimuli-based gaze variables and to provide students gaze-aware feedback to improve overall learning process. One key ingredient in the process of achieving a high level of adaptation in providing gaze-aware feedback to the students is to use Artificial Intelligence (AI) algorithms for prediction of student performance from their behaviour. In this contribution, we also present a method combining state-of-the-art AI technique with the eye-tracking data to predict student performance. The results show that the student performance can be predicted with an error of less than 5%.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Education

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Behaviour Patterns in Online and PDF Magazines with AI Eye-Tracking;Behavioral Sciences;2024-08-05

2. Evaluating computer science students reading comprehension of educational multimedia-enhanced text using scalable eye-tracking methodology;Smart Learning Environments;2024-06-21

3. Biometrics and Behavior Analysis for Detecting Distractions in e- Learning;2024 International Symposium on Computers in Education (SIIE);2024-06-19

4. Uncovering Learning Styles through Eye Tracking and Artificial Intelligence;Proceedings of the 2024 Symposium on Eye Tracking Research and Applications;2024-06-04

5. Artificial Intelligence-Driven Instruction and Its Impact on Heutagogy and Student Engagement;Advances in Computational Intelligence and Robotics;2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3