Author:
Lan Hengxing,Song Zhanting,Bao Han,Ma Yangfan,Yan Changgen,Liu Shijie,Wang Juntian
Abstract
Abstract
Background
Loess is prone to large deformation and flow slide due to natural and artificial interfaces inside. The strength of these interfaces controls the mechanical properties of loess. Obtaining their mechanical parameters through in-situ testing is essential for evaluating the mechanical stability in loess engineering with interfaces.
Methods
By developing a borehole micro static cone penetration system and creating various types of loess with interfaces, extensive borehole penetration model tests were conducted to observe changes in cone tip resistance during penetration. The response surface method was used to analyze the impact of various test conditions on the calculated resistance. A three-dimensional surface fitting method was employed to establish the relationship between penetration parameters and shear strength parameters, which was validated through in-situ testing.
Results
The developed borehole micro static cone penetration system achieves overall miniaturization while providing significant penetration power and ensuring an effective penetration distance. Cone tip resistance development during penetration can be divided into three stages: initial, rapid increase, and slow increase. The transition times between these stages vary for different soils. Calculated resistance is positively correlated with dry density and normal stress and negatively correlated with water content. A quadratic positive correlation was established between calculated resistance and shear strength parameters during penetration. In composite soils, the interaction between water content and normal stress is strong. Compared to intact soil samples, the shear strength parameters of composite soils are more prominently influenced by water content.
Conclusion
A system for testing interface mechanical parameters was innovatively developed, fulfilling the need to obtain interface shear strength parameters for deep soil. This study can provide support for ensuring the long-term stability of the loess slope or subgrade with interfaces.
Funder
National Natural Science Foundation of China
Key Research and Development Projects of Shaanxi Province
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC