Functionalization of niobium nitrogen-doped titanium dioxide (TiO2) nanoparticles with ethanolic extracts of Mentha arvensis

Author:

Farooqi Muhammad Awais,Farooqi Hafiz Muhammad Umer,Bhatti Theophilus,Siddiqui Ghayas Uddin,Kausar Farzana,Kang Chul Ung

Abstract

AbstractTitanium dioxide (TiO2) nanoparticles have gained significant attention due to their wide-ranging applications. This research explores an approach to functionalize Niobium Nitrogen Titanium Dioxide nanoparticles (Nb-N-TiO2 NPs) with Mentha arvensis ethanolic leaf extracts. This functionalization allows doped NPs to interact with the bioactive compounds in extracts, synergizing their antioxidant activity. While previous studies have investigated the antioxidant properties of TiO2 NPs synthesized using ethanolic extracts of Mentha arvensis, limited research has focused on evaluating the antioxidant potential of doped nanoparticles functionalized with plant extracts. The characterization analyses are employed by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Ultraviolet–visible (UV–Vis) spectroscopy to evaluate these functionalized doped nanoparticles thoroughly. Subsequently, the antioxidant capabilities through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays have been assessed. Within functionalized Nb-N-TiO2, the FTIR has a distinctive peak at 2350, 2010, 1312, 1212, and 1010 cm−1 with decreased transmittance associated with vibrations linked to the Nb-N bond. SEM revealed a triangular aggregation pattern, 500 nm to 2 µm of functionalized Nb-N-TiO2 NPs. Functionalized doped Nb-N-TiO2 NPs at 500 µg mL−1 exhibited particularly robust antioxidant activity, achieving an impressive 79% efficacy at DPPH assessment; meanwhile, ferric reduction efficiency of functionalized doped Nb-N-TiO2 showed maximum 72.16%. In conclusion, doped Nb-N-TiO2 NPs exhibit significantly enhanced antioxidant properties when functionalized with Mentha arvensis ethanolic extract compared to pure Nb-N-TiO2 manifested that doped Nb-N-TiO2 have broad promising endeavors for various biomedicine applications.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3