Abstract
AbstractDesigning powerful electromagnetic wave modulators is required for the advancement of optical communication technology. In this work, we study how to efficiently modulate the amplitude of electromagnetic waves in near-infrared region, by the interactions between the interband transition of graphene and the magnetic dipole resonance in metamaterials. The reflection spectra of metamaterials could be significantly reduced in the wavelength range below the interband transition, because the enhanced electromagnetic fields from the magnetic dipole resonance greatly increase the light absorption in graphene. The maximum modulation depth of reflection spectra can reach to about 40% near the resonance wavelength of magnetic dipole, for the interband transition to approach the magnetic dipole resonance, when an external voltage is applied to change the Fermi energy of graphene.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Natural Science Foundation of Zhejiang Province
Project funded by China Postdoctoral Science Foundation
State Key Laboratory of Millimeter Waves
Office of Naval Research
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献