Prediction Network of Metamaterial with Split Ring Resonator Based on Deep Learning

Author:

Hou Zheyu,Tang Tingting,Shen Jian,Li Chaoyang,Li Fuyu

Abstract

AbstractThe introduction of “metamaterials” has had a profound impact on several fields, including electromagnetics. Designing a metamaterial’s structure on demand, however, is still an extremely time-consuming process. As an efficient machine learning method, deep learning has been widely used for data classification and regression in recent years and in fact shown good generalization performance. We have built a deep neural network for on-demand design. With the required reflectance as input, the parameters of the structure are automatically calculated and then output to achieve the purpose of designing on demand. Our network has achieved low mean square errors (MSE), with MSE of 0.005 on both the training and test sets. The results indicate that using deep learning to train the data, the trained model can more accurately guide the design of the structure, thereby speeding up the design process. Compared with the traditional design process, using deep learning to guide the design of metamaterials can achieve faster, more accurate, and more convenient purposes.

Funder

Sichuan Science and Technology Program

Open Project Program of State Key Laboratory of Marine Resource Utilization in South China Sea

Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Reference29 articles.

1. Li FY, Tang TT, Luo L et al (2019) Terahertz radiation field distribution manipulation by metasurface with graphene substrate[J]. Superlattices Microstructures 133

2. Vakil A, Engheta N (2011) Transformation optics using graphene[J]. Science 332(6035):1291–1294

3. Zhang PY, Tang TT, Shen J et al (2019) Spin hall effect of light in a prism-waveguide coupling structure with a magneto-optical bimetallic film[J]. Superlattices Microstructures 128:136–143

4. Koschny T, Markos P, Smith DR et al (2003) Resonant and antiresonant frequency dependence of the effective parameters of metamaterials[J]. Phys Rev E Stat Nonlinear Soft Matter Phys 68(6 Pt 2):065602

5. Tang TT, Li J, Luo L et al (2018) Magneto-optical modulation of photonic spin hall effect of graphene in terahertz region[J]. Adv Optical Mat 6(7):1701212.1–1701212.7

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3