NDFuzz: a non-intrusive coverage-guided fuzzing framework for virtualized network devices

Author:

Zhang Yu,Zhong Nanyu,You Wei,Zou YanyanORCID,Jian Kunpeng,Xu Jiahuan,Sun Jian,Liu Baoxu,Huo Wei

Abstract

AbstractNetwork function virtualization provides programmable in-network middlewares by leveraging virtualization technologies and commodity hardware and has gained popularity among all mainstream network device manufacturers. Yet it is challenging to apply coverage-guided fuzzing, one of the state-of-the-art vulnerability discovery approaches, to those virtualized network devices, due to inevitable integrity protection adopted by those devices. In this paper, we propose a coverage-guided fuzzing framework NDFuzz for virtualized network devices with a novel integrity protection bypassing method, which is able to distinguish processes of virtualized network devices from hypervisors with a carefully designed non-intrusive page global directory inference technique. We implement NDFuzz atop of two black-box fuzzers and evaluate NDFuzz with three representative network protocols, SNMP , DHCP and NTP , on nine popular virtualized network devices. NDFuzz obtains an average 36% coverage improvement in comparison with its black-box counterparts. NDFuzz discovers 2 0-Day vulnerabilities and 1 1-Day vulnerability with coverage guidance while the black-box fuzzer can find only one of them. All discovered vulnerabilities are confirmed by corresponding vendors.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated SC-MCC test case generation using coverage-guided fuzzing;Software Quality Journal;2024-05-14

2. White-Box Fuzzing RPC-Based APIs with EvoMaster: An Industrial Case Study;ACM Transactions on Software Engineering and Methodology;2023-07-21

3. No More Companion Apps Hacking but One Dongle: Hub-Based Blackbox Fuzzing of IoT Firmware;Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services;2023-06-18

4. ParCNetV2: Oversized Kernel with Enhanced Attention*;IEEE I CONF COMP VIS;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3