Phishing behavior detection on different blockchains via adversarial domain adaptation

Author:

Yan Chuyi,Han Xueying,Zhu Yan,Du Dan,Lu Zhigang,Liu Yuling

Abstract

AbstractDespite the growing attention on blockchain, phishing activities have surged, particularly on newly established chains. Acknowledging the challenge of limited intelligence in the early stages of new chains, we propose ADA-Spear-an automatic phishing detection model utilizing adversarial domain adaptive learning which symbolizes the method’s ability to penetrate various heterogeneous blockchains for phishing detection. The model effectively identifies phishing behavior in new chains with limited reliable labels, addressing challenges such as significant distribution drift, low attribute overlap, and limited inter-chain connections. Our approach includes a subgraph construction strategy to align heterogeneous chains, a layered deep learning encoder capturing both temporal and spatial information, and integrated adversarial domain adaptive learning in end-to-end model training. Validation in Ethereum, Bitcoin, and EOSIO environments demonstrates ADA-Spear’s effectiveness, achieving an average F1 score of 77.41 on new chains after knowledge transfer, surpassing existing detection methods.

Funder

National Key Research and Development Program of China

Foundation Strengthening Program Technical Area Fund

technological project funding of the State Grid Corporation of China

Youth Innovation Promotion Association CAS

the Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

the Program of Key Laboratory of Network Assessment Technology

the Chinese Academy of Sciences, Program of Beijing Key Laboratory of Network Security and Protection Technolog

Publisher

Springer Science and Business Media LLC

Reference60 articles.

1. Aggarwal CC et al (2015) Data mining: the textbook, vol 1

2. Ao X, Liu Y, Qin Z, Sun Y, He Q (2021) Temporal high-order proximity aware behavior analysis on Ethereum. World Wide Web 24:1–21

3. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International conference on machine learning. PMLR, pp 214–223

4. Chainanalysis: The 2022 Crypto Crime Report. https://go.chainalysis.com/rs/503-FAP-074/images/Crypto-Crime-Report-2022.pdf

5. Chen L, Peng J, Liu Y, Li J, Xie F, Zheng Z (2020a) Phishing scams detection in Ethereum transaction network. ACM Trans Internet Technol (TOIT) 21(1):1–16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3