Data and knowledge-driven named entity recognition for cyber security

Author:

Gao Chen,Zhang XuanORCID,Liu Hui

Abstract

AbstractNamed Entity Recognition (NER) for cyber security aims to identify and classify cyber security terms from a large number of heterogeneous multisource cyber security texts. In the field of machine learning, deep neural networks automatically learn text features from a large number of datasets, but this data-driven method usually lacks the ability to deal with rare entities. Gasmi et al. proposed a deep learning method for named entity recognition in the field of cyber security, and achieved good results, reaching an F1 value of 82.8%. But it is difficult to accurately identify rare entities and complex words in the text.To cope with this challenge, this paper proposes a new model that combines data-driven deep learning methods with knowledge-driven dictionary methods to build dictionary features to assist in rare entity recognition. In addition, based on the data-driven deep learning model, an attention mechanism is adopted to enrich the local features of the text, better models the context, and improves the recognition effect of complex entities. Experimental results show that our method is better than the baseline model. Our model is more effective in identifying cyber security entities. The Precision, Recall and F1 value reached 90.19%, 86.60% and 88.36% respectively.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Reference27 articles.

1. Bridges, R, Jones C, MD. Iannacone KT, Goodall J (2013) Automatic labeling for entity extraction in cyber security. arXiv preprint arXiv:1308.4941.

2. Collobert, R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Natural language processing (almost) from scratch. J Mach Learn Res 12:2493–2537.

3. Dionísio, N, Alves F, Ferreira P, Bessani A (2019) Cyber threat detection from twitter using deep neural networks In: 2019 International Joint Conference on Neural Networks (IJCNN), 1–8.. IEEE, Budapest.

4. Gasmi, H, Bouras A, Laval J (2018) Lstm recurrent neural networks for cyber security named entity recognition In: Proceedings of the Thirteenth International Conference on Software Engineering Advances, Nice.

5. Gu, X, Liu J, Cheng P, He X (2018) Tweet malware name recognition based on enhanced bilstmcrf model(in chinese). Comput Sci 47:245–250.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3