Abstract
Abstract
Background
At present, the process of inspection and quarantine starts with sampling at the customs port, continues with transporting the samples to the central laboratory for inspection experiments, and ends with the inspected results being fed back to the port. This process had the risks of degradation of biological samples and generation of pathogenic microorganisms and did not meet the rapid on-site detection demand because it took a rather long time. Therefore, it is urgently needed to develop a rapid and high-throughput detection assay of pathogenic microorganisms at the customs port. The aim of this study was to develop a microfluidic chip to rapidly detect swine pathogenic microorganisms with high-throughput and higher accuracy. Moreover, this chip will decrease the risk of spreading infection during transportation.
Results
A series of experiments were performed to establish a microfluidic chip. The resulting data showed that the positive nucleic acid of four swine viruses were detected by using a portable and rapid microfluidic PCR system, which could achieve a on-site real-time quantitative PCR detection. Furthermore, the detection results of eight clinical samples were obtained within an hour. The lowest concentration that amplified of this microfluidic PCR detection system was as low as 1 copies/μL. The results showed that the high specificity of this chip system in disease detection played an important role in customs inspection and quarantine during customs clearance.
Conclusion
The microfluidic PCR detection system established in this study could meet the requirement for rapid detection of samples at the customs port. This chip could avoid the risky process of transporting the samples from the sampling site to the testing lab, and drastically reduce the inspection cycle. Moreover, it would enable parallel inspections on one chip, which greatly raised the efficiency of inspection.
Funder
National Key Research and Development Project
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference41 articles.
1. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.
2. Watanabe M, Kawaguchi T, Isa S, Ando M, Tamiya A, Kubo A, Saka H, Takeo S, Adachi H, Tagawa T, et al. Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non–small cell lung Cancer patients with an EGFR-activating mutation using droplet digital PCR. Clin Cancer Res. 2015;21:3552–60.
3. Pekin D, Skhiri Y, Baret J-C, Corre DL, Mazutis L, Salem CB, Millot F, Harrak AE, Hutchison JB, Larson JW, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip. 2011;11:2156–66.
4. Mo QH, Yang CL, Lin JC, Tan H, Tu CN, Ye LQ, Liu ZM, Du J, Sun H, Yang Z. One-step multiplex RT-PCR for rapid screening of type a, B and novel a (H1N1) influenza viruses. Nan Fang Yi Ke Da Xue Xue Bao. 2009;29:1545–7.
5. Sippert E, Rocha BC, Assis FL, Ok S, Rios M. Use of monocyte-derived macrophage culture increases Zika virus isolation rate from human plasma. Viruses. 2019;11:1058.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献