Functional phenotyping of the CYP2D6 probe drug codeine in the horse

Author:

Gretler S. R.,Finno C. J.,Kass P. H.,Knych H. K.ORCID

Abstract

Abstract Background In humans, the drug metabolizing enzyme CYP2D6 is highly polymorphic resulting in substantial differences in the metabolism of drugs including anti-arrhythmics, neuroleptics, and opioids. The objective of this study was to phenotype a population of 100 horses from five different breeds and assess differences in the metabolic activity of the equine CYP2D6 homolog using codeine as a probe drug. Administration of a probe drug is a common method used for patient phenotyping in human medicine, whereby the ratio of parent drug to metabolite (metabolic ratio, MR) can be used to compare relative enzyme function between individuals. A single oral dose of codeine (0.6 mg/kg) was administered and plasma concentrations of codeine and its metabolites were determined using liquid chromatography mass spectrometry. The MR of codeine O-demethylation [(codeine)/(morphine + morphine-3-glucuronide + morphine-6-glucuronide)] was determined using the area under the plasma concentration-time curve extrapolated from time zero to infinity (AUC0-∞) for each analyte and used to group horses into predicted phenotypes (high-, moderate-, and low-MR). Results The MR of codeine O-demethylation ranged from 0.002 to 0.147 (median 0.018) among all horses. No significant difference in MR was observed between breeds, age, or sex. Of the 100 horses, 11 were classified as high-MR, 72 moderate-MR, and 17 low-MR. Codeine AUC0-∞ and O-demethylation MR were significantly different (p < 0.05) between all three groups. The mean ± SD MR was 0.089 ± 0.027, 0.022 ± 0.011, and 0.0095 ± 0.001 for high-, moderate-, and low-MR groups, respectively. The AUC for the morphine metabolites morphine-3-glucuronide and morphine-6-glucuronide were significantly different between high-and low-MR groups (p < 0.004 and p < 0.006). Conclusions The MR calculated from plasma following codeine administration allowed for classification of horses into metabolic phenotypes within a large population. The range of codeine metabolism observed among horses suggests the presence of genetic polymorphisms in CYP2D82 of which codeine is a known substrate. Additional studies including CYP2D82 genotyping of high- and low-MR individuals are necessary to determine the presence of CYP2D polymorphisms and their functional implications with respect to the metabolism of therapeutics.

Funder

Center for Equine Health University of California, Davis

California Horse Racing Board

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3