Functionalized chitosan-G-poly caprolactone vaccine delivery system fabricated to display antigen–antibody immune complexes of Mycobacterium tuberculosis elicits immune response in Ex-vivo model

Author:

Rajadas Sam EbenezerORCID,Sounderrajan Vignesh,Prabhakaran Rajendran Amarnath,Agrawal Ragini,Jeyadoss Lavanya,Rajan Mariappan,Parthasarathy Krupakar,Harshavardhan Shakila

Abstract

Abstract Background Vaccine development against tuberculosis remains a global health imperative, necessitating robust immunogenicity and safety profiles. Nanoparticle-based delivery systems offer promising avenues to enhance vaccine efficacy while ensuring tolerability. This study explores the utilization of chitosan micelles as a delivery platform for immune complex vaccination against tuberculosis. Leveraging two key antigens of Mycobacterium tuberculosis, namely HspX and Mpt51, known for their relevance in latent tuberculosis and its co-infection with the human immunodeficiency virus, immune complexes were synthesized in vitro using antibodies raised against these antigens. The immune complexes were then conjugated onto chitosan micelles, characterized for their physicochemical properties, and evaluated for their biocompatibility and immunogenicity. Results Chitosan nanoparticles conjugated with either antigen or its immune complexes were synthesized as micelles and physicochemical characterizations confirm the formation of micelles without altering the polymer composition. These immune complex-conjugated chitosan micelles were found to be safe, exhibiting no significant hemolytic and cytotoxic activity even at a higher concentration of 400 µg/ml. Peripheral blood mononuclear cells upon stimulation with immune complex-conjugated chitosan micelles showed enhanced cellular uptake and one to two-fold increased expression of key immune markers—interferon gamma and CD-86. Conclusions These findings underscore the potential of chitosan nanoparticles as a versatile delivery platform for immune complex vaccination against tuberculosis. While limitations exist, such as including only two markers of immune modulation, this study lays a foundation for future investigations into immune complex vaccine potential in animal models. In conclusion, chitosan micelles carrying immune complexes of HspX and Mpt51 tuberculosis antigens exhibit promising immunogenicity, highlighting their potential as a platform for multi-antigenic vaccine components warranting further in vivo studies.

Funder

Human Resource Development Centre, Council of Scientific And Industrial Research

University Grants Commission - South Eastern Regional Office

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3