Abstract
Abstract
Background
A holding chamber (HC) was created to work with a vibrating mesh nebulizer (VMN) to boost the total inhalable dose for patients. In addition to the optional supply of supplemental oxygen, it facilitates intermittent and continuous nebulization. Our goal was to see how well a VMN coupled to a HC with a mouthpiece or valved facemask performed at varied oxygen flows starting at 0–6 L/min. In this study, we used a breathing simulator to simulate adults' spontaneous breathing patterns with a tidal volume of 500 mL and a 1:1 inhalation–exhalation ratio. For the combination of nebulizer and HC adapter with a valved facemask or mouthpiece, five determinations were made. Salbutamol was recovered and evaluated using high-performance liquid chromatography from the inhalation filter connected to the breathing simulator, the nebulizer reservoir chamber, and the HC.
Results
The amount of salbutamol in the nebulizer reservoir chamber and within the HC did not differ significantly when using a mouthpiece or a valved facemask. However, the supplied dose to the inhalation filter was increased until oxygen flow reached 2 and 3 L/min using the mouthpiece and valved facemask as interfaces, respectively. The supplied salbutamol was much higher at this flow than at the other oxygen flows. This was followed by a progressive reduction in the supplied salbutamol until the lowest given dose was reached at 6 L/min oxygen flow, p < 0.005.
Conclusions
The supplied doses of salbutamol to the inhalation filter were variable with the VMN connected to the HC and mouthpiece or valved facemask, with significant improvements until an oxygen flow of 2 L/min with a mouthpiece and 3 L/min with a valved facemask, followed by gradual decreases to lower values at an oxygen flow of 6 L/min. An in vivo investigation is required to further validate the findings.
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)
Reference33 articles.
1. Sarhan RM, Elberry AA, Abdelwahab NS et al (2018) Effect of a nebulizer holding chamber on aerosol delivery. Respir Care 63(9):1125–1131
2. Ari A, de Andrade AD, Sheard M et al (2015) Performance comparisons of jet and mesh nebulizers using different interfaces in simulated spontaneously breathing adults and children. J Aerosol Med Pulm Drug Deliv 28(4):281–289
3. Abdelrahim ME, Chrystyn H (2009) Aerodynamic characteristics of nebulized terbutaline sulphate using the next generation impactor (NGI) and CEN method. J Aerosol Med Pulm Drug Deliv 22(1):19–28
4. Hassan A, Rabea H, Hussein RR et al (2016) In-vitro characterization of the aerosolized dose during non-invasive automatic continuous positive airway pressure ventilation. Pulm Ther 2:115–126
5. Muhammad HE, ElHansy MEB, Farid H, Chrystyn H, Maraghi SKE, Al-Kholy MB, El-Essawy AFM, Abdelrahman MM, Said ASA, Hussein RRS, Rabea H, Abdelrahim MEA (2016) In-vitro aerodynamic characteristics of aerosol delivered from different inhalation methods in mechanical ventilation. Pharm Dev Technol 22(6):844–849