Effect of oxygen flow on aerosol delivery from a vibrating mesh nebulizer with a holding chamber

Author:

Amin Mohammed A.ORCID,Taha Hebatullah K.,Hussein Raghda R. S.,Sarhan Rania M.,Abdelrahim Mohamed E. A.

Abstract

Abstract Background A holding chamber (HC) was created to work with a vibrating mesh nebulizer (VMN) to boost the total inhalable dose for patients. In addition to the optional supply of supplemental oxygen, it facilitates intermittent and continuous nebulization. Our goal was to see how well a VMN coupled to a HC with a mouthpiece or valved facemask performed at varied oxygen flows starting at 0–6 L/min. In this study, we used a breathing simulator to simulate adults' spontaneous breathing patterns with a tidal volume of 500 mL and a 1:1 inhalation–exhalation ratio. For the combination of nebulizer and HC adapter with a valved facemask or mouthpiece, five determinations were made. Salbutamol was recovered and evaluated using high-performance liquid chromatography from the inhalation filter connected to the breathing simulator, the nebulizer reservoir chamber, and the HC. Results The amount of salbutamol in the nebulizer reservoir chamber and within the HC did not differ significantly when using a mouthpiece or a valved facemask. However, the supplied dose to the inhalation filter was increased until oxygen flow reached 2 and 3 L/min using the mouthpiece and valved facemask as interfaces, respectively. The supplied salbutamol was much higher at this flow than at the other oxygen flows. This was followed by a progressive reduction in the supplied salbutamol until the lowest given dose was reached at 6 L/min oxygen flow, p < 0.005. Conclusions The supplied doses of salbutamol to the inhalation filter were variable with the VMN connected to the HC and mouthpiece or valved facemask, with significant improvements until an oxygen flow of 2 L/min with a mouthpiece and 3 L/min with a valved facemask, followed by gradual decreases to lower values at an oxygen flow of 6 L/min. An in vivo investigation is required to further validate the findings.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3