Middle ear-acquired cholesteatoma diagnosis based on CT scan image mining using supervised machine learning models

Author:

Ouattassi NaouarORCID,Maaroufi Mustapha,Slaoui Hajar,Benateya Andaloussi Taha,Zarghili Arsalane,El Amine El Alami Mohamed Nouredine

Abstract

Abstract Background Distinguishing between middle ear cholesteatoma and chronic suppurative otitis media (CSOM) is an ongoing challenge. While temporal bone computed tomography (CT) scan is highly accurate for diagnosing middle ear conditions, its specificity in discerning between cholesteatoma and CSOM is only moderate. To address this issue, we utilized trained machine learning models to enhance the specificity of temporal bone CT scan in diagnosing middle ear cholesteatoma. Our database consisted of temporal bone CT scan native images from 122 patients diagnosed with middle ear cholesteatoma and a control group of 115 patients diagnosed with CSOM, with both groups labeled based on surgical findings. We preprocessed the native images to isolate the region of interest and then utilized the Inception V3 convolutional neural network for image embedding into data vectors. Classification was performed using machine learning models including support vector machine (SVM), k-nearest neighbors (k-NN), random forest, and neural network. Statistical metrics employed to interpret the results included classification accuracy, precision, recall, F1 score, confusion matrix, area under the receiver operating characteristic curve (AUC), and FreeViz diagram. Results Our training dataset comprised 5390 images, and the testing dataset included 125 different images. The neural network, k-NN, and SVM models demonstrated significantly higher relevance in terms of classification accuracy, precision, and recall compared to the random forest model. For instance, the F1 scores were 0.974, 0.987, and 0.897, respectively, for the former three models, in contrast to 0.661 for the random forest model. Conclusion The performance metrics of the presented trained machine learning models hold promising prospects as potentially clinically useful aids.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3