Metalloproteins and apolipoprotein C: candidate plasma biomarkers of T2DM screened by comparative proteomics and lipidomics in ZDF rats

Author:

Wang Shuai,Lu Zhiyuan,Wang Yuxin,Zhang Tianran,He XiaodongORCID

Abstract

Abstract Background Early diagnosis of type 2 diabetes mellitus (T2DM) is still difficult. Screening of plasma biomarkers has great significance of optimizing diagnosis and predicting the complications of T2DM. Methods We used a special diet, Purina #5008, to induce diabetes in Zucker leptin receptor gene-deficient rats (fa/fa) to establish Zucker diabetic fatty (ZDF) rats, simulating the early stage of T2DM. The differentially expressed proteins (DEP) and lipids (DEL), as potential biomarkers, were screened to compare the plasma expression levels in ZDF rats and their basic diet-fed wild-type controls (fa/+) by Tandem Mass Tags (TMT) and liquid chromatography-tandem mass spectrometry. Results These two groups had different plasma proteins and lipids profiles consisting of 84 DEPs and, 179 DELs identified in the positive ion mode and 178 DELs in the negative ion mode, respectively. Enrichment analysis of these different indicators showed that oxidative stress, insulin resistance and metabolic disorders of glycan and lipid played an important role in generating the difference. Some markers can be used as candidate biomarkers in prediction and treatments of T2DM, such as ceruloplasmin, apolipoprotein C-I, apolipoprotein C-II and apolipoprotein C-IV. Conclusion These plasma differences help to optimize the diagnosis and predict the complications of T2DM, although this remains to be verified in the crowd. Trace elements related-metalloproteins, such as ceruloplasmin, and lipid metabolism and transport-related apolipoprotein C are expected to be candidate biomarkers of T2DM and should be given more attention.

Funder

Program for Changjiang Scholars and Innovative Research Team in University

Open Project of Shandong Provincial Key Laboratory of Infection and Immunity

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3