Multidrug Resistance-Associated Protein 1 (MRP1) mediated vincristine resistance: effects of N-acetylcysteine and Buthionine Sulfoximine

Author:

Akan Ilhan,Akan Selma,Akca Hakan,Savas Burhan,Ozben Tomris

Abstract

Abstract Background Multidrug resistance mediated by the multidrug resistance-associated protein 1 (MRP1) decreases cellular drug accumulation. The exact mechanism of MRP1 involved multidrug resistance has not been clarified yet, though glutathione (GSH) is likely to have a role for the resistance to occur. N-acetylcysteine (NAC) is a pro-glutathione drug. DL-Buthionine (S,R)-sulfoximine (BSO) is an inhibitor of GSH synthesis. The aim of our study was to investigate the effect of NAC and BSO on MRP1-mediated vincristine resistance in Human Embryonic Kidney (HEK293) and its MRP1 transfected 293MRP cells. Human Embryonic Kidney (HEK293) cells were transfected with a plasmid encoding whole MRP1 gene. Both cells were incubated with vincristine in the presence or absence of NAC and/or BSO. The viability of both cells was determined under different incubation conditions. GSH, Glutathione S-Transferase (GST) and glutathione peroxidase (GPx) levels were measured in the cell extracts obtained from both cells incubated with different drugs. Results N-acetylcysteine increased the resistance of both cells against vincristine and BSO decreased NAC-enhanced MRP1-mediated vincristine resistance, indicating that induction of MRP1-mediated vincristine resistance depends on GSH. Vincristine decreased cellular GSH concentration and increased GPx activity. Glutathione S-Transferase activity was decreased by NAC. Conclusion Our results demonstrate that NAC and BSO have opposite effects in MRP1 mediated vincristine resistance and BSO seems a promising chemotherapy improving agent in MRP1 overexpressing tumor cells.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3