From Devo to Evo: patterning, fusion and evolution of the zebrafish terminal vertebra

Author:

Cumplido Nicolás,Allende Miguel L.,Arratia GloriaORCID

Abstract

Abstract Background With more than 30,000 species, teleosts comprise about half of today’s living vertebrates, enriched with a wide set of adaptations to all aquatic systems. Their evolution was marked by modifications of their tail, that involved major rearrangements of the metameric organization of the axial skeleton. The most posterior or ural caudal skeleton, primitively included more than 10 vertebrae and, through a series of fusions and losses, became reduced to a single vertebra in modern ostariophysans, one of the largest clades of teleosts. The ontogeny of the ostariophysan Danio rerio recapitulates this process by forming two or three separate vertebrae that become a single vertebra in adults. We characterize the developmental sequence of this change by describing the processes of patterning, fusion and differential growth on each of the constitutive elements that sculpt the adult terminal vertebra. Results The ontogenetic changes of the terminal vertebra were characterized, highlighting their shared and derived characters in comparison with other teleosts. In zebrafish, there is: i) a loss of the preural centrum 1, ii) the formation of an hourglass-shaped autocentrum only in the anterior but not the posterior border of the compound centrum, iii) the formation of a vestigial posterior centrum that does not form an autocentrum and becomes incorporated beneath the compound centrum during development, and iv) the elongated dorso-posterior process of the compound centrum or pleurostyle appears as an independent element posterior to the compound centrum, before fusing to the ural neural arches and the anterior portion of the compound centrum. Conclusions The unique features of the formation of the terminal vertebra in Danio rerio reflect the remarkable changes that occurred during the evolution of teleosts, with potential shared derived characteristics for some of the major lineages of modern teleosts. A new ontogenetic model is proposed to illustrate the development of the terminal vertebra, and the phylogenetic implications for the evolution of caudal skeleton consolidation in ostariophysans are discussed.

Funder

ANID-FONDAP

ANID-FONDECYT

ANID/DOCTORADO NACIONAL-2015

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference75 articles.

1. Nelson JS, Grande TC, Wilson MVH. Fishes of the world. 5th ed. Hoboken, New Jersey: Wiley; 2016. p. 1–707.

2. Arratia G. Complexities of early Teleostei and the evolution of particular morphological structures through time. Copeia. 2015;103(4):999–1025. https://doi.org/10.1643/cg-14-184.

3. Arratia G. The caudal skeleton of Jurassic teleosts, a phylogenetic analysis. In: Chang M, Liu H, Zhang G, editors. Early vertebrates and related problems in evolutionary biology. Beijing: Science Press; 1991. p. 249–82.

4. Arratia G. Basal Teleostean and Teleostean phylogeny. Palaeo Ichthyol. 1997;7:5–168.

5. Arratia G. The monophyly of Teleostei and stem-group teleosts. Consensus and disagreements. In: Schultze H-P, Arratia G, editors. Mesozoic Fishes 2 - Systematics and Fossil Record. München: Verlag Dr. Friedrich Pfeil; 1999. p. 265–334.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3