Shaoyao Decoction reduced T lymphocyte activation by regulating of intestinal flora and 5-hydroxytryptamine metabolism in ulcerative colitis

Author:

Zhen Jianhua,Li Yini,Zhang Yunan,Zhou Yali,Zhao Lu,Huang GuangruiORCID,Xu Anlong

Abstract

Abstract Background Shaoyao Decoction (SYD) is a widely recognized herbal formula utilized in traditional Chinese medicine for the treatment of diarrhea. Although it has demonstrated significant effectiveness in clinical practice for treating ulcerative colitis, the precise mechanisms by which it operates remain largely elusive. Methods The active ingredients of SYD were obtained by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), which were used to explore the potential pharmacological mechanism based on TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and PANTHER (Protein Analysis Through Evolutionary Relationships) classification system. In a mouse model of dextran sulfate sodium (DSS)-induced colitis, mRNA sequencing, 16S rDNA sequencing and targeted metabolomics techniques were used to elucidate the mechanisms of SYD, and immunohistochemistry, immunofluorescence, enzyme linked immunosorbent assay, real time quantitative polymerase chain reaction and western blot were used to test the key targets. In addition, QGP-1 and H9 cells were performed to validate the discoveries from the animal experiments. Results In the mouse model of DSS-induced colitis, SYD effectively alleviated symptoms such as bloody stool, tissue damage, inflammation, intestinal flora dysbiosis and abnormal gene expression. Analyses of both differential expressed genes in colonic tissue and predicted 16S rDNA genes, as well as the analyses of targeted genes from TCMSP based on the active ingredients in UPLC-MS/MS of SYD, uncovered the enrichment of pathways involved in the biosynthesis and degredation of 5-hydroxytryptamine (5-HT). Interestingly, SYD suppressed the relative abundance of key genes in 5-HT synthesis, Tph1(Tryptophan hydroxylase 1) and Ddc (Dopa decarboxylase), in faeces from DSS-induced mice, leading to a reduction in the concentration of fecal 5-HT. Moreover, SYD augmented the production of butyric acid. Subsequently, increasing butyric acid influenced the metabolism of 5-HT in the organism through G protein-coupled receptor 43 by impeding its synthesis, facilitating its transport and degredation. These findings were additionally corroborated in a model utilizing enterochromaffin cell (QGP-1 cells). Furthermore, reduced levels of 5-HT hindered the activation of T lymphocytes (H9 cells) via the PKC (Protein kinase C) and NF-κB (Nuclear factor kappa-B) signaling pathways, by means of HTR1A (5-HT receptor 1A) and HTR3 (5-HT receptor 3). Additionally, diminished secretion of 5-HT resulted in reduced secretion of associated cytokines, thereby alleviating inflammation in the colon. Conclusion Through modulation of T lymphocyte activation mediated by 5-HT metabolism in the local colon via the intestinal flora and its metabolite, SYD effectively mitigated colonic inflammation in DSS-induced mice.

Funder

National Natural Science Foundation of China

The Joint Funds of National Natural Science Foundation of China

China Postdoctoral Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3