Repurposing a clinically approved prescription Colquhounia root tablet to treat diabetic kidney disease via suppressing PI3K/AKT/NF-kB activation

Author:

Ma Zhaochen,Liu Yudong,Li Congchong,Zhang Yanqiong,Lin Na

Abstract

Abstract Background Growing clinical evidences show the potentials of Colquhounia root tablet (CRT) in alleviating diabetic kidney disease (DKD). However, its pharmacological properties and underlying mechanisms remain unclear. Methods ‘Drug target-Disease gene’ interaction network was constructed and the candidate network targets were screened through evaluating node genes' topological importance. Then, a DKD rat model induced by high-fat diet/streptozotocin was established and used to determine pharmacological effects and network regulatory mechanisms of CRT against DKD, which were also verified using HK2 cell model induced by high glucose. Results The candidate network targets of CRT against DKD were involved into various type II diabetes-related and nephropathy-related pathways. Due to the topological importance of the candidate network targets and the important role of the imbalance between immunity and inflammation in the pathogenesis of DKD, PI3K/AKT/NF-кB signaling-mediated immune-modulatory and anti-inflammatory actions of CRT were selected to be experimentally verified. On the basis of high-fat diet (HFD) / streptozotocin (STZ)-induced DKD rat model, CRT effectively reduced the elevated level of blood glucose, decreased the accumulation of renal lipid, suppressed inflammation and the generation of ECM proteins, and ameliorated kidney function and the renal histopathology through inhibiting the activation of PI3K, AKT and NF-кB proteins, reducing the nuclear accumulation of NF-кB protein and the serum levels of downstream cytokines, which were in line with the in vitro findings. Conclusions Our data suggest that CRT may be the promising candidate drug for treating DKD via reversing the imbalance of immune-inflammation system mediated by the PI3K/AKT/NF-кB/IL-1β/TNF-α signaling.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Scientific and technological innovation project of China Academy of Chinese Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3