A simplified herbal decoction attenuates myocardial infarction by regulating macrophage metabolic reprogramming and phenotypic differentiation via modulation of the HIF-1α/PDK1 axis

Author:

Lin Zhi-junORCID,Dong Xin,He Huan,Jiang Jia-lin,Guan Zhuo-ji,Li Xuan,Lu Lu,Li Huan,Huang Yu-sheng,Xian Shao-xiang,Yang Zhong-qi,Chen Zi-xin,Fang Hong-cheng,Wang Ling-jun

Abstract

Abstract Background Myocardial infarction (MI) poses a global public health challenge, often associated with elevated mortality rates and a grim prognosis. A crucial aspect of the inflammatory injury and healing process post-MI involves the dynamic differentiation of macrophages. A promising strategy to alleviate myocardial damage after MI is by modulating the inflammatory response and orchestrating the shift from pro-inflammatory (M1) to anti-inflammatory (M2) macrophages, aiming to achieve a reduced M1/M2 ratio. Nuanxinkang (NXK), a simplified herbal decoction, has demonstrated noteworthy cardioprotective, inflammation-regulating, and myocardial energy metabolism-regulating properties. Methods In this study, we constructed an MI model by ligating coronary arteries to investigate the efficacy of NXK in improving ventricular remodeling and cardiac function. Mice were administered NXK (1.65 g/kg/d) or an equivalent volume of regular saline via gavage for 28 consecutive days, commencing the day after surgery. Then, we conducted echocardiography to assess the cardiac function, Masson staining to illustrate the extent of myocardial fibrosis, TUNEL staining to reveal myocardial apoptosis, and flow cytometry to analyze the polarization of M1 and M2 macrophages in the hearts. Besides, a lipopolysaccharide (LPS)-induced pro-inflammatory macrophage (M1) polarization model was implemented in RAW264.7 cells to elucidate the underlying mechanism of NXK in regulating macrophage polarization. RAW264.7 cells were pre-treated with or without NXK-containing serum. Oxidative stress was detected by MitoSox staining, followed by Seahorse energy metabolism assay to evaluate alterations in mitochondrial metabolic patterns and ATP production. Both In vivo and in vitro, HIF-1α and PDK1 were detected by fluorescent quantitative PCR and Western blotting. Results In vivo, MI mice exhibited a decline in cardiac function, adverse ventricular remodeling, and an increase in glycolysis, coupled with M1-dominant polarization mediated by the HIF-1α/PDK1 axis. Notably, robust responses were evident with high-dose NXK treatment (1.65 g/kg/day), leading to a significant enhancement in cardiac function, inhibition of cardiac remodeling, and partial suppression of macrophage glycolysis and the inflammatory phenotype in MI mice. This effect was achieved through the modulation of the HIF-1α/PDK1 axis. In vitro, elevated levels of mitochondrial ROS production and glycolysis were observed in LPS-induced macrophages. Conversely, treatment with NXK notably reduced the oxidative stress damage induced by LPS and enhanced oxidative phosphorylation (OXPHOS). Furthermore, NXK demonstrated the ability to modify the energy metabolism and inflammatory characteristics of macrophages by modulating the HIF-1α/PDK1 axis. The influence of NXK on this axis was partially counteracted by the HIF-1α agonist DMOG. And NXK downregulated PDK1 expression, curtailed glycolysis, and reversed LPS-induced M1 polarization in macrophages, similar to the PDK1 inhibitor DCA. Conclusion In conclusion, NXK protects against MI-induced cardiac remodeling by inducing metabolic reprogramming and phenotypic differentiation of macrophages, achieved through the modulation of the HIF-1α/PDK1 axis. This provides a novel and promising strategy for the treatment of MI.

Funder

National Natural Science Foundation of China

Guangdong Provincial Department of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3