Deciphering the effects of kosmotrope and chaotrope salts during aqueous two phase extraction (ATPE) of polyphenolic compounds and glycoalkaloids from the leaves of a nutraceutical plant, Solanum retroflexum, with the aid of UPLC-QTOF-MS

Author:

Mokgehle Tebogo,Madala Ntakadzeni,Gitari Wilson,Tavengwa Nikita

Abstract

AbstractSolanum plants (Solanaceae) are renowned source of nutraceuticals and have widely been explored for their phytochemical constituents. This work investigated the effects of kosmotropic and chaotropic salts on the number of phytochemicals extracted from the leaves of a nutraceutical plant, Solanum retroflexum, and analyzed on the ultra-performance liquid chromatography hyphenated to a quadrupole time of flight mass spectrometer (UPLC-QTOF-MS) detector. Here, a total of 20 different compounds were putatively characterized. The majority of the identified compounds were polyphenols and glycoalkaloids. Another compound, caffeoyl malate was identified for the first time in this plant. Glycoalkaloids such as solanelagnin, solamargine, solasonine, β-solanine (I) and β-solanine (II) were found to be extracted by almost all the salts used herein. Kosmotrope salts, overall, were more efficient in extracting polar compounds with 4 more polyphenolic compounds extracted compared to the chaotropes. Chaotropes were generally more selective for the extraction of less polar compounds (glycoalkaloids) with 3 more extracted than the kosmotropes. The chaotrope and the kosmotrope that extracted the most metabolites were NaCl and Na2SO4, respectively, with 12 metabolites extracted for each salt. This work demonstrated that a comprehensive metabolome of S. retroflexum, more than what was previously reported on the same plant, can be achieved by application of kosmotropes and chaotropes as extractants with the aid of the Aqueous Two Phase Extraction approach. The best-performing salts, Na2SO4 or NaCl, could potentially be applied on a commercial scale, to meet the ever-growing demand of the studied metabolites. The Aqueous Two Phase Extraction technique was found to be efficient in simultaneous extraction of multiple metabolites which can be applied in metabolomics.

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3