Knowledge and associated factors of healthcare professionals in detecting patient-ventilator asynchrony using waveform analysis at intensive care units of the federal public hospitals in Addis Ababa, Ethiopia, 2023

Author:

Zelalem Habtamu,Sibhat Migbar Mekonnen,Yeshidinber Abate,Kehali Habtamu

Abstract

Abstract Background The interaction between the patient and the ventilator is often disturbed, resulting in patient-ventilator asynchrony (PVA). Asynchrony can lead to respiratory failure, increased artificial ventilation time, prolonged hospitalization, and escalated healthcare costs. Professionals’ knowledge regarding waveform analysis has significant implications for improving patient outcomes and minimizing ventilation-related adverse events. Studies investigating the knowledge of healthcare professionals on patient-ventilator asynchrony and its associated factors in the Ethiopian context are limited. Therefore, this study aimed to assess the knowledge of healthcare professionals about using waveform analysis to detect asynchrony. Methods A multicenter cross-sectional study was conducted on 237 healthcare professionals (HCPs) working in the intensive care units (ICUs) of federal public hospitals in Addis Ababa, Ethiopia, from December 2022 to May 2023. The data were collected using a structured and pretested interviewer-administered questionnaire. Then, the collected data were cleaned, coded, and entered into Epi data V-4.2.2 and exported to SPSS V-27 for analysis. After description, associations were analyzed using binary logistic regression. Variables with a P-value of < 0.25 in the bivariable analysis were transferred to the multivariable analysis. Statistical significance was declared using 95% confidence intervals, and the strengths of associations were reported using adjusted odds ratios (AORs). Results A total of 237 HCPs participated in the study with a response rate of 100%. Half (49.8%) of the participants were females. The mean age of the participants was 29 years (SD = 3.57). Overall, 10.5% (95% CI: 6.9–15.2) of the participants had good knowledge of detecting PVA using waveform analysis. In the logistic regression, the number of MV-specific trainings and the training site had a statistically significant association with knowledge of HCPs. HCPs who attended more frequent MV training were more likely to have good knowledge than their counterparts [AOR = 6.88 (95% CI: 2.61–15.45)]. Additionally, the odds of good knowledge among professionals who attended offsite training were 2.6 times higher than those among professionals trained onsite [AOR = 2.63 (95% CI: 1.36–7.98)]. Conclusion The knowledge of ICU healthcare professionals about the identification of PVA using waveform analysis is low. In addition, the study also showed that attending offsite MV training and repeated MV training sessions were independently associated with good knowledge. Consequently, the study findings magnify the relevance of providing frequent and specific training sessions focused on waveform analysis to boost the knowledge of HCPs.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3