Abstract
Abstract
Background
Myotonic dystrophy type 1 (DM1), one of the most common forms of adult-onset muscular dystrophy, is caused by abnormally expanded CTG repeats in the 3′ untranslated region of the DMPK gene. The CUG repeats transcribed from the expanded CTG repeats sequestrate a splicing factor, MBNL1, causing the clinical symptoms in DM1. Nowadays, only symptomatic treatments are available for DM1, and no rational therapy is available. Recently, upregulation of MBNL1 expression has been found to be one of the promising therapies for DM1.
Methods
All experiments were conducted in the C2C12 myoblasts and HSALR mice, a DM1 mouse model. Real-time PCR and western blot were used to detect the mRNA and protein level, respectively. The rotarod exercise, grip strength and hanging time were used to evaluate the muscle strength of mice.
Results
In this study, we demonstrated that calcitriol, an active form of vitamin D3, increased MBNL1 in C2C12 mouse myoblasts as well as in HSALR mice model for DM1. In HSALR mice model, calcitriol improved muscle strength, and corrected aberrant splicing in skeletal muscle. Besides, calcitriol reduced the number of central nuclei, and improved muscle histopathology in HSALR mice. In addition, we identified that calcitriol upregulated MBNL1 expression via activating the promoter of Mbnl1 in C2C12 myogenic cells.
Conclusion
Our study suggests that calcitriol is a potential pharmacological strategy for DM1 that enhances MBNL1 expression.
Funder
National Natural Science Foundation of China
Department of Science & Technology of Hunan Province
Science and Technology Innovation Program of Hunan Province, China
China Postdoctoral Science Foundation
Central South University
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献