Abstract
AbstractInherited deficiency of thymidine phosphorylase (TP), encoded by TYMP, leads to a rare disease with multiple mitochondrial DNA (mtDNA) abnormalities, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the impact of TP deficiency on lysosomes remains unclear, which are important for mitochondrial quality control and nucleic acid metabolism. Muscle biopsy tissue and skin fibroblasts from MNGIE patients, patients with m.3243 A > G mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and healthy controls (HC) were collected to perform mitochondrial and lysosomal functional analyses. In addition to mtDNA abnormalities, compared to controls distinctively reduced expression of LAMP1 and increased mitochondrial content were detected in the muscle tissue of MNGIE patients. Skin fibroblasts from MNGIE patients showed decreased expression of LAMP2, lowered lysosomal acidity, reduced enzyme activity and impaired protein degradation ability. TYMP knockout or TP inhibition in cells can also induce the similar lysosomal dysfunction. Using lysosome immunoprecipitation (Lyso- IP), increased mitochondrial proteins, decreased vesicular proteins and V-ATPase enzymes, and accumulation of various nucleosides were detected in lysosomes with TP deficiency. Treatment of cells with high concentrations of dThd and dUrd also triggers lysosomal dysfunction and disruption of mitochondrial homeostasis. Therefore, the results provided evidence that TP deficiency leads to nucleoside accumulation in lysosomes and lysosomal dysfunction, revealing the widespread disruption of organelles underlying MNGIE.
Graphical Abstract
Funder
the National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Hirano M, Carelli V, De Giorgio R, Pironi L, Accarino A, Cenacchi G, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): position paper on diagnosis, prognosis, and treatment by the MNGIE International Network. J Inher Metab Disea. 2021;44:376–87.
2. González-Vioque E, Torres-Torronteras J, Andreu AL, Martí R. Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE). PLoS Genet. 2011;7:e1002035.
3. Miyazono K, Okabe T, Urabe A, Takaku F, Heldin CH. Purification and properties of an endothelial cell growth factor from human platelets. J Biol Chem. 1987;262:4098–103.
4. O’Brien TS, Fox SB, Dickinson AJ, Turley H, Westwood M, Moghaddam A, et al. Expression of the angiogenic factor thymidine phosphorylase/platelet-derived endothelial cell growth factor in primary bladder cancers. Cancer Res. 1996;56:4799–804.
5. Baris A, Fraile-Bethencourt E, Eubanks J, Khou S, Anand S. Thymidine phosphorylase facilitates retinoic acid inducible gene-I induced endothelial dysfunction. Cell Death Dis. 2023;14:294.