Abstract
AbstractBackgroundThere are sudden deterioration phenomena during the progression of many complex diseases, including most cancers; that is, the biological system may go through a critical transition from one stable state (the normal state) to another (the disease state). It is of great importance to predict this critical transition or the so-called pre-disease state so that patients can receive appropriate and timely medical care. In practice, however, this critical transition is usually difficult to identify due to the high nonlinearity and complexity of biological systems.MethodsIn this study, we employed a model-free computational method, local network entropy (LNE), to identify the critical transition/pre-disease states of complex diseases. From a network perspective, this method effectively explores the key associations among biomolecules and captures their dynamic abnormalities.ResultsBased on LNE, the pre-disease states of ten cancers were successfully detected. Two types of new prognostic biomarkers, optimistic LNE (O-LNE) and pessimistic LNE (P-LNE) biomarkers, were identified, enabling identification of the pre-disease state and evaluation of prognosis. In addition, LNE helps to find “dark genes” with nondifferential gene expression but differential LNE values.ConclusionsThe proposed method effectively identified the critical transition states of complex diseases at the single-sample level. Our study not only identified the critical transition states of ten cancers but also provides two types of new prognostic biomarkers, O-LNE and P-LNE biomarkers, for further practical application. The method in this study therefore has great potential in personalized disease diagnosis.
Funder
National Natural Science Foundation of China
Guangdong Basic and Applied Basic Research Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference41 articles.
1. Chen LN, Liu R, Liu ZP, Li MY, Aihara K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep. 2012;2:8.
2. Liu R, Aihara K, Chen L. Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes. Quant Biol. 2013;1:105–14.
3. Litt B, Esteller R, Echauz J, D’Alessandro M, Shor R, Henry T, Pennell P, Epstein C, Bakay R, Dichter M, Vachtsevanos G. Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron. 2001;30:51–64.
4. McSharry PE, Smith LA, Tarassenko L. Prediction of epileptic seizures: are nonlinear methods relevant? Nat Med. 2003;9:241–2.
5. Liu R, Chen P, Chen L. Single-sample landscape entropy reveals the imminent phase transition during disease progression. Bioinformatics. 2020;36:1522–32.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献