A Bayesian spatio-temporal study of the association between meteorological factors and the spread of COVID-19

Author:

Mullineaux Jamie D.ORCID,Leurent Baptiste,Jendoubi Takoua

Abstract

Abstract Background The spread of COVID-19 has brought challenges to health, social and economic systems around the world. With little to no prior immunity in the global population, transmission has been driven primarily by human interaction. However, as with common respiratory illnesses such as influenza some authors have suggested COVID-19 may become seasonal as immunity grows. Despite this, the effects of meteorological conditions on the spread of COVID-19 are poorly understood. Previous studies have produced contrasting results, due in part to limited and inconsistent study designs. Methods This study investigates the effects of meteorological conditions on COVID-19 infections in England using a Bayesian conditional auto-regressive spatio-temporal model. Our data consists of daily case counts from local authorities in England during the first lockdown from March–May 2020. During this period, legal restrictions limiting human interaction remained consistent, minimising the impact of changes in human interaction. We introduce a lag from weather conditions to daily cases to accommodate an incubation period and delays in obtaining test results. By modelling spatio-temporal random effects we account for the nature of a human transmissible virus, allowing the model to isolate meteorological effects. Results Our analysis considers cases across England’s 312 local authorities for a 55-day period. We find relative humidity is negatively associated with COVID-19 cases, with a 1% increase in relative humidity corresponding to a reduction in relative risk of 0.2% [95% highest posterior density (HPD): 0.1–0.3%]. However, we find no evidence for temperature, wind speed, precipitation or solar radiation being associated with COVID-19 spread. The inclusion of weekdays highlights systematic under reporting of cases on weekends with between 27.2–43.7% fewer cases reported on Saturdays and 26.3–44.8% fewer cases on Sundays respectively (based on 95% HPDs). Conclusion By applying a Bayesian conditional auto-regressive model to COVID-19 case data we capture the underlying spatio-temporal trends present in the data. This enables us to isolate the main meteorological effects and make robust claims about the association of weather variables to COVID-19 incidence. Overall, we find no strong association between meteorological factors and COVID-19 transmission.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference29 articles.

1. UKGovernment: COVID-19 Mental Health and Wellbeing Surveillance: Report. https://www.gov.uk/government/publications/covid-19-mental-health-and-wellbeing-surveillance-report Accessed 18 Aug 2022.

2. MoJ: Reducing the backlog in criminal courts. Accessed August 2022; 2022.

3. NHS: Delivery plan for tackling the covid-19 backlog of elective care. Accessed Aug 2022; 2022.

4. Mahase E. Covid-19: death rate is 0.66% and increases with age, study estimates. BMJ Br Med J. 2020;369:m1327.

5. abcNews: DHS Study Trump Touted on Sunlight, Heat Killing Virus Preliminary, Not Peer-reviewed. https://abcnews.go.com/Politics/dhs-study-trump-touted-sunlight-heat-killing-virus/story?id=70328629 Accessed 18 Aug 2022.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3