Abstract
Abstract
Background
The complex interplay between health, lifestyle and genetics represents a critical area of research for understanding and promoting human well-being. Importantly, genetics plays a key role in determining individual susceptibility to disease and response to lifestyle. The aim of the present study was to identify genetic factors related to the metabolic/inflammatory profile of adolescents providing new insights into the individual predisposition to the different effects of the substances from the environment.
Methods
Association analysis of genetic variants and biochemical parameters was performed in a total of 77 healthy adolescents recruited in the context of the DIMENU study.
Results
Polymorphisms of 3-hydroxy-3-methylglutaril coenzyme A reductase (HMGCR; rs142563098), C-reactive protein gene (CRP; rs1417938, rs1130864), cholesteryl ester transfer protein (CETP; rs5030708), interleukin (IL)—10 (IL-10; rs3024509) genes were significantly associated (p < 0.05) with various serum metabolic parameters. Of particular interest were also the correlations between the HMGCRpolymorphism (rs3846663) and tumor necrosis factor (TNF)-α levels, as well Fatty-acid desaturase (FADS) polymorphism (rs7481842) and IL-10 level opening a new link between lipidic metabolism genes and inflammation.
Conclusion
In this study, we highlighted associations between single nucleotide polymorphisms (SNPs) and serum levels of metabolic and inflammatory parameters in healthy young individuals, suggesting the importance of genetic profiling in the prevention and management of chronic disease.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference55 articles.
1. Pahwa R, Goyal A, Jialal I. Chronic Inflammation. In StatPearls; StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies. Disclosure: Amandeep Goyal declares no relevant financial relationships with ineligible companies. Disclosure: Ishwarlal Jialal declares no relevant financial relationships with ineligible companies. 2023;2.
2. Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15:104–16. https://doi.org/10.1038/nri3793.
3. Andersen CJ. Impact of dietary cholesterol on the pathophysiology of infectious and autoimmune disease. Nutrients. 2018. https://doi.org/10.3390/nu10060764.
4. Kumar NG, Contaifer D, Madurantakam P, Carbone S, Price ET, Van Tassell B, Brophy DF, Wijesinghe DS. Dietary bioactive fatty acids as modulators of immune function: implications on human health. Nutrients. 2019. https://doi.org/10.3390/nu11122974.
5. Huang J, Yancey PG, Tao H, Borja MS, Smith LE, Kon V, Davies SS, Linton MF. Reactive dicarbonyl scavenging effectively reduces MPO-mediated oxidation of HDL and restores PON1 Activity. Nutrients. 2020. https://doi.org/10.3390/nu12071937.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献