Author:
Wu Lin,Chen Shuangxi,He Bing,Zhou Guijuan,Xu Yan,Zhu Guanghua,Xie Juan,Deng Limin,Wen Xuanwei,Li Sijing,Xiao Zijian
Abstract
Abstract
Background
Brachial plexus root avulsion (BPRA), a disabling peripheral nerve injury, induces substantial motoneuron death, motor axon degeneration and denervation of biceps muscles, leading to the loss of upper limb motor function. Acetylglutamine (N-acetyl-L-glutamine, NAG) has been proven to exert neuroprotective and anti-inflammatory effects on various disorders of the nervous system. Thus, the present study mainly focused on the influence of NAG on motor and sensory recovery after BPRA in rats and the underlying mechanisms.
Methods
Male adult Sprague Dawley (SD) rats were subjected to BPRA and reimplantation surgery and subsequently treated with NAG or saline. Behavioral tests were conducted to evaluate motor function recovery and the mechanical pain threshold of the affected forelimb. The morphological appearance of the spinal cord, musculocutaneous nerve, and biceps brachii was assessed by histological staining. Quantitative real-time PCR (qRT‒PCR) was used to measure the mRNA levels of remyelination and regeneration indicators in myocutaneous nerves. The protein levels of inflammatory and pyroptotic indicators in the spinal cord anterior horn were measured using Western blotting.
Results
NAG significantly accelerated the recovery of motor function in the injured forelimbs, enhanced motoneuronal survival in the anterior horn of the spinal cord, inhibited the expression of proinflammatory cytokines and pyroptosis pathway factors, facilitated axonal remyelination in the myocutaneous nerve and alleviated atrophy of the biceps brachii. Additionally, NAG attenuated neuropathic pain following BPRA.
Conclusion
NAG promotes functional motor recovery and alleviates neuropathic pain by enhancing motoneuronal survival and axonal remyelination and inhibiting the pyroptosis pathway after BPRA in rats, laying the foundation for the use of NAG as a novel treatment for BPRA.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference38 articles.
1. Kaiser R, Waldauf P, Haninec P. Types and severity of operated supraclavicular brachial plexus injuries caused by traffic accidents. Acta Neurochir. 2012;154(7):1293–7.
2. Umansky D, Midha R. Treatment of neuropathic pain after peripheral nerve and brachial plexus traumatic injury. Neurol India. 2019;67(Supplement):23-S24.
3. Zhang X, Liu XD, Xian YF, Zhang F, Huang PY, Tang Y, Yuan QJ, Lin ZX. Berberine enhances survival and axonal regeneration of motoneurons following spinal root avulsion and re-implantation in rats. Free Radic Biol Med. 2019;143:454–70.
4. Terzis JK, Vekris MD, Soucacos PN. Brachial plexus root avulsions. World J Surg. 2001;25(8):1049–61.
5. Gu HY, Chai H, Zhang JY, Yao ZB, Zhou LH, Wong WM, Bruce IC, Wu WT. Survival, regeneration and functional recovery of motoneurons after delayed reimplantation of avulsed spinal root in adult rat. Exp Neurol. 2005;192(1):89–99.