Author:
Wu Yuting,Yang Shuhui,Han Luyang,Shang Kezhuo,Zhang Baohui,Gai Xiaochen,Deng Weiwei,Liu Fangming,Zhang Hongbing
Abstract
Abstract
Background
Although β-catenin signaling cascade is frequently altered in human cancers, targeting this pathway has not been approved for cancer treatment.
Methods
High-throughput screening of an FDA-approved drug library was conducted to identify therapeutics that selectively inhibited the cells with activated β-catenin. Efficacy of iron chelator and mitochondrial inhibitor was evaluated for suppression of cell proliferation and tumorigenesis. Cellular chelatable iron levels were measured to gain insight into the potential vulnerability of β-catenin-activated cells to iron deprivation. Extracellular flux analysis of mitochondrial function was conducted to evaluate the downstream events of iron deprivation. Chromatin immunoprecipitation, real-time quantitative PCR and immunoblotting were performed to identify β-catenin targets. Depletion of iron-regulatory protein 2 (IRP2), a key regulator of cellular iron homeostasis, was carried out to elucidate its significance in β-catenin-activated cells. Online databases were analyzed for correlation between β-catenin activity and IRP2-TfR1 axis in human cancers.
Results
Iron chelators were identified as selective inhibitors against β-catenin-activated cells. Deferoxamine mesylate, an iron chelator, preferentially repressed β-catenin-activated cell proliferation and tumor formation in mice. Mechanically, β-catenin stimulated the transcription of IRP2 to increase labile iron level. Depletion of IRP2-sequered iron impaired β-catenin-invigorated mitochondrial function. Moreover, mitochondrial inhibitor S-Gboxin selectively reduced β-catenin-associated cell viability and tumor formation.
Conclusions
β-catenin/IRP2/iron stimulation of mitochondrial energetics is targetable vulnerability of β-catenin-potentiated cancer.
Funder
Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences
Haihe Laboratory of Cell Ecosystem Innovation Fund
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献