β-catenin-IRP2-primed iron availability to mitochondrial metabolism is druggable for active β-catenin-mediated cancer

Author:

Wu Yuting,Yang Shuhui,Han Luyang,Shang Kezhuo,Zhang Baohui,Gai Xiaochen,Deng Weiwei,Liu Fangming,Zhang Hongbing

Abstract

Abstract Background Although β-catenin signaling cascade is frequently altered in human cancers, targeting this pathway has not been approved for cancer treatment. Methods High-throughput screening of an FDA-approved drug library was conducted to identify therapeutics that selectively inhibited the cells with activated β-catenin. Efficacy of iron chelator and mitochondrial inhibitor was evaluated for suppression of cell proliferation and tumorigenesis. Cellular chelatable iron levels were measured to gain insight into the potential vulnerability of β-catenin-activated cells to iron deprivation. Extracellular flux analysis of mitochondrial function was conducted to evaluate the downstream events of iron deprivation. Chromatin immunoprecipitation, real-time quantitative PCR and immunoblotting were performed to identify β-catenin targets. Depletion of iron-regulatory protein 2 (IRP2), a key regulator of cellular iron homeostasis, was carried out to elucidate its significance in β-catenin-activated cells. Online databases were analyzed for correlation between β-catenin activity and IRP2-TfR1 axis in human cancers. Results Iron chelators were identified as selective inhibitors against β-catenin-activated cells. Deferoxamine mesylate, an iron chelator, preferentially repressed β-catenin-activated cell proliferation and tumor formation in mice. Mechanically, β-catenin stimulated the transcription of IRP2 to increase labile iron level. Depletion of IRP2-sequered iron impaired β-catenin-invigorated mitochondrial function. Moreover, mitochondrial inhibitor S-Gboxin selectively reduced β-catenin-associated cell viability and tumor formation. Conclusions β-catenin/IRP2/iron stimulation of mitochondrial energetics is targetable vulnerability of β-catenin-potentiated cancer.

Funder

Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences

Haihe Laboratory of Cell Ecosystem Innovation Fund

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3