Cytotoxic lymphocytes-related gene ITK from a systematic CRISPR screen could predict prognosis of ovarian cancer patients with distant metastasis

Author:

Xu Mengyao,Huang Shan,Chen Jiahui,Xu Wanxue,Xiang Rong,Piao Yongjun,Zhao Shuangtao

Abstract

Abstract Background Ovarian cancer, a highly metastatic malignancy, has benefited tremendously from advances in modern human genomics. However, the genomic variations related to the metastasis remains unclear. Methods We filtered various significant genes (n = 6722) associated with metastasis within a large-scale functional genomic CRISPR/Cas9 knock-out library including 122,756 single guide RNAs, and identified ITK (IL2 Inducible T Cell Kinase) as a potential cancer suppressor gene for ovarian cancer metastasis. Downstream bioinformatic analysis was performed for ITK using public databases. Results We found that patients in low-ITK group had poor prognosis and more distant metastasis than those in high-ITK group in TCGA and GEO databases. We also demonstrated that ITK combined with the clinical factors could accurately predict prognosis through multiple Cox regression analysis and ROC analysis. Moreover, alterations correlated with distant metastasis emereged with significantly increased expression in SAMRCD1 in low-ITK group, but CD244 and SOCS1 in high-ITK group. Integrated analysis revealed dysregulated molecular processes including predominantly oncogenic signaling pathways in low-ITK group but immune related pathways in high-ITK group, which suggested ITK might inhibit distant metastasis in ovarian cancer. Furtherly, deconvolution of the cellular composition of all samples validated the close correlation between ITK and immune related function especially for cytotoxic lymphocytes. Conclusions Together, these data provide insights into the potential role of ITK, with implications for the future development of tansformative ovarian cancer therapeutics.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3