mSwap: a large-scale image-compositing method with optimal m-ary tree

Author:

Hou Min,Bi ChongkeORCID,Wang Fang,Deng Liang,Zheng Gang,Meng Xiangfei

Abstract

AbstractWith the increasing of computing ability, large-scale simulations have been generating massive amounts of data in aerodynamics. Sort-last parallel rendering is the most classical image compositing method for large-scale scientific visualization. However, in the stage of image compositing, the sort-last method may suffer from scalability problem on large-scale processors. Existing image compositing algorithms tend to perform well in certain situations. For instance, Direct Send is well on small and medium scale; Radix-k gets well performance only when the k-value is appropriate and so on. In this paper, we propose a novel method named mSwap for scientific visualization in aerodynamics, which uses the best scale of processors to make sure its performance at the best. mSwap groups the processors that we can use with a (m,k) table, which records the best combination of m (the number of processors in subgroup of each group) and k (the number of processors in each group). Then in each group, using a m-ary tree to composite the image for reducing the communication of processors. Finally, the image is composited between different groups to generate the final image. The performance and scalability of our mSwap method is demonstrated through experiments with thousands of processors.

Funder

Young Scientists Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3