Identification of FtfL as a novel target of berberine in intestinal bacteria

Author:

Yan Jinci,Fang Chengli,Yang Gaohua,Li Jianxu,Liu Yanqiang,Zhang Lu,Yang Pengjie,Fang Jingyuan,Gu Yang,Zhang Yu,Jiang Weihong

Abstract

Abstract Background Berberine (BBR) is a commonly used anti-intestinal inflammation drug, and its anti-cancer activity has been found recently. BBR can intervene and control malignant colorectal cancer (CRC) through intestinal microbes, but the direct molecular target and related mechanism are unclear. This study aimed to identify the target of BBR and dissect related mechanisms against the occurrence and development of CRC from the perspective of intestinal microorganisms. Results Here, we found that BBR inhibits the growth of several CRC-driving bacteria, especially Peptostreptococcus anaerobius. By using a biotin-conjugated BBR derivative, we identified the protein FtfL (formate tetrahydrofolate ligase), a key enzyme in C1 metabolism, is the molecular target of BBR in P. anaerobius. BBR exhibits strong binding affinity and potent inhibition on FtfL. Based on this, we determined the crystal structure of PaFtfL (P. anaerobius FtfL)-BBR complex and found that BBR can not only interfere with the conformational flexibility of PaFtfL tetramer by wedging the tetramer interface but also compete with its substrate ATP for binding within the active center. In addition, the enzymatic activities of FtfL homologous proteins in human tumor cells can also be inhibited by BBR. Conclusions In summary, our study has identified FtfL as a direct target of BBR and uncovered molecular mechanisms involved in the anti-CRC of BBR. BBR interferes with intestinal pathogenic bacteria by targeting FtfLs, suggesting a new means for controlling the occurrence and development of CRC.

Funder

National Natural Science Foundation of China

the National Key Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3