Competition-based screening helps to secure the evolutionary stability of a defensive microbiome

Author:

Worsley Sarah F.,Innocent Tabitha M.,Holmes Neil A.,Al-Bassam Mahmoud M.,Schiøtt Morten,Wilkinson Barrie,Murrell J. Colin,Boomsma Jacobus J.,Yu Douglas W.,Hutchings Matthew I.ORCID

Abstract

Abstract Background The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. Results Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. Conclusions Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition.

Funder

Natural Environment Research Council

European Research Council

Marie Curie

Key Research Program of Frontier Sciences, Chinese Academy of Sciences

Strategic Priority Research Program, Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3