Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization
-
Published:2020-12
Issue:1
Volume:18
Page:
-
ISSN:1741-7007
-
Container-title:BMC Biology
-
language:en
-
Short-container-title:BMC Biol
Author:
Zhao Yan,Dong Luhao,Jiang Conghui,Wang Xueqiang,Xie Jianyin,Rashid Muhammad Abdul Rehman,Liu Yanhe,Li Mengyao,Bu Zhimu,Wang Hongwei,Ma Xin,Sun Silong,Wang Xiaoqian,Bo Cunyao,Zhou Tingting,Kong Lingrang
Abstract
Abstract
Background
The speciation and fast global domestication of bread wheat have made a great impact on three subgenomes of bread wheat. DNA base composition is an essential genome feature, which follows the individual-strand base equality rule and [AT]-increase pattern at the genome, chromosome, and polymorphic site levels among thousands of species. Systematic analyses on base compositions of bread wheat and its wild progenitors could facilitate further understanding of the evolutionary pattern of genome/subgenome-wide base composition of allopolyploid species and its potential causes.
Results
Genome/subgenome-wide base-composition patterns were investigated by using the data of polymorphic site in 93 accessions from worldwide populations of bread wheat, its diploid and tetraploid progenitors, and their corresponding reference genome sequences. Individual-strand base equality rule and [AT]-increase pattern remain in recently formed hexaploid species bread wheat at the genome, subgenome, chromosome, and polymorphic site levels. However, D subgenome showed the fastest [AT]-increase across polymorphic site from Aegilops tauschii to bread wheat than that on A and B subgenomes from wild emmer to bread wheat. The fastest [AT]-increase could be detected almost all chromosome windows on D subgenome, suggesting different mechanisms between D and other two subgenomes. Interestingly, the [AT]-increase is mainly contributed by intergenic regions at non-selective sweeps, especially the fastest [AT]-increase of D subgenome. Further transition frequency and sequence context analysis indicated that three subgenomes shared same mutation type, but D subgenome owns the highest mutation rate on high-frequency mutation type. The highest mutation rate on D subgenome was further confirmed by using a bread-wheat-private SNP set. The exploration of loci/genes related to the [AT] value of D subgenome suggests the fastest [AT]-increase of D subgenome could be involved in DNA repair systems distributed on three subgenomes of bread wheat.
Conclusions
The highest mutation rate is detected on D subgenome of bread wheat during domestication after allopolyploidization, leading to the fastest [AT]-increase pattern of D subgenome. The phenomenon may come from the joint action of multiple repair systems inherited from its wild progenitors.
Funder
National Key Research and Development Progra China Postdoctoral Science Foundatio Agriculture Variety Improvement Project of Shandong Provinc
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference68 articles.
1. Ken-ichi T, Willcox G. How fast was wild wheat domesticated? Science. 2006;311(5769):1886. 2. Balfourier F, Bouchet S, Robert S, De Oliveira R, Rimbert H, Kitt J, Choulet F, Paux E, Consortium IWGS, Consortium B, et al. Worldwide phylogeography and history of wheat genetic diversity. Sci Adv. 2019;5(5):eaav0536. 3. Mallet J. Hybrid speciation. Nature. 2007;446(7133):279–83. 4. Kilian B, Özkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol. 2006;24(1):217–27. 5. Luo M-C, Yang Z-L, You FM, Kawahara T, Waines JG, Dvorak J. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet. 2007;114(6):947–59.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|