Regression algorithms-driven mechanical properties prediction of angle bracket connection on cross-laminated timber structures

Author:

Wu Zhe,Chen Lin,Xiong Haibei

Abstract

AbstractThe construction of structures using cross-laminated timber (CLT) has grown in popularity as a result of its environmentally friendly and high-strength characteristics. The primary function of angle bracket connections is to resist the force of CLT structures under horizontal forces, which is essential to ensure the seismic resilience and ductility of CLT structures. A regression algorithms-driven method for predicting the mechanical performance of angle bracket connections is introduced in this study. As input parameters, the geometric dimensions of the angle bracket connector, the connection method of the connector with the wall and floor slabs, and the properties of the CLT panel are utilized to predict the yield load, the maximal load, the initial stiffness, and the ductility ratio of the angle bracket connection. Prediction models were developed using the collected data from 110 angle bracket experiments, and each prediction model's performance was discussed in depth. Lastly, the permutation importance and SHapley Additive exPlanations (SHAP) value analysis were used to interpret the prediction models. The results showed that the extreme gradient boosting (XGB) algorithm could accurately predict the maximum and yielding load of the angle bracket connection, with R2 reaching 0.968 and 0.939. Furthermore, in predicting the initial stiffness of the angle bracket, the XGB algorithm performed the best with an average ratio of predicted to actual values of 0.985. The results indicated that this study proposed an accurate and efficient method for angle bracket connection to predicting its mechanical properties and confirmed the trustworthiness and feasibility of the prediction models.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3