Normal contact performance of mortise and tenon joint: theoretical analysis and numerical simulation

Author:

Xie QifangORCID,Zhang Baozhuang,Zhang Lipeng,Guo Tiantian,Wu Yajie

Abstract

AbstractThis article aims to investigate the contact characteristics of mortise and tenon (M&T) joints in the traditional timber structures. In particular, the normal embedded compressive contact between contact surfaces of M&T joint was investigated. Based on basic contact theory and contact characteristics between mortise and tenon, a normal elasto-plastic contact model, which can reflect the real normal contact behavior of M&T joints in traditional wooden structures, was proposed. Coulomb friction contact was utilized to describe the tangential slipping characteristics of the contact surfaces. Micro-morphology scanning tests of wood samples with different roughness were carried out to determine the parameters involved in the normal contact model. The normal contact model subroutine of M&T joint was compiled by FORTRAN language, implemented into ABAQUS through user-defined interface (UINTER). Then the proposed model was verified by shear tests of wood contact surfaces considering different normal pressures. Finally, a finite element model (FEM) of straight tenon joint subjected to cyclic reversed loading, based on the proposed normal elasto-plastic contact model, was developed, and a FEM considering normal “hard contact” between the contact surfaces, was also performed. The simulation results were validated by the experimental results. Results showed that the user-defined normal elasto-plastic contact FEM was more in line with the actual force state and mechanical behavior of M&T joints, which can more accurately predict the failure modes and simulate the hysteretic behavior of M&T joints, compared to the FEM considering normal “hard contact” of the contact surfaces.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3