Abstract
AbstractThe hot-disk method is a transient method for the measurement of thermal properties. This method can measure both the thermal conductivity and thermal diffusivity in a short time for isotropic materials. To establish a method for measuring the thermal properties of wood by the hot-disk method, the relationship between the thermal properties of wood obtained by the hot-disk method and those obtained by the steady-state method was investigated. The thermal properties were measured by the hot-disk method using small pieces of kiri (Paulownia tomentosa), sugi (Cryptomeria japonica), hinoki (Chamaecyparis obtusa), yachidamo (Fraxinus mandshurica), and buna (Fagus crenata) when the hot-disk sensor was in contact with the cross section, radial section, and tangential section. The thermal conductivities in the longitudinal, radial, and tangential directions were also measured by the comparison method using the same specimen. The thermal properties obtained by the hot-disk method and the steady-state method were compared, based on the assumption that the thermal diffusivity measured by the hot-disk method was the geometric mean of that in the two main directions in the plane of the sensor, and the thermal conductivity measured by the hot-disk method was a power of that in three main directions. As a result, the thermal conductivity obtained by the hot-disk method was 10–20% higher than that obtained by the steady-state method; the thermal diffusivity measured by the hot-disk method was equal to that obtained by the steady-state method on average, while in the former thermal diffusivity varied widely. These results were found to be explainable in terms of the Dufour effect, which is the heat flow induced by the mass flow caused by the heating of the sensor, and the existing findings on the time dependence of the sensitivity coefficient in the hot-disk method. The present study proposed two methods for calculating the thermal properties of wood from the hot-disk method were proposed, and it was found that the errors between the obtained thermal properties and those obtained by the steady-state method differed depending on the calculation method.
Funder
Bio-oriented Technology Research Advancement Institution
Publisher
Springer Science and Business Media LLC
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献