The effects of watering on cambial activity in the stems of evergreen hardwood (Samanea saman) during the pre-monsoon season in subtropical Bangladesh

Author:

Rahman Md Hasnat,Begum Shahanara,Nugroho Widyanto Dwi,Nakaba Satoshi,Funada RyoORCID

Abstract

AbstractWater stress has a significant impact on tree growth. However, the effects of watering on cambial activity and its influence on tree growth in subtropical climates is poorly understood. The present study analyzed the cambial activity on the stem of evergreen hardwood Samanea saman in response to either high frequency or low frequency watering during the pre-monsoon season in subtropical Bangladesh. We used two groups of seedlings: one group of seedlings was watered daily (high frequency watering), while the second group of seedlings was watered at 4–5-day intervals (low frequency watering). Samples for sequential observations of cambial activity by microscopy were collected from the main stems of seedlings of both groups. At the start of the experiment on March 25, 2015, during the pre-monsoon season, the cambium was inactive with no evidence of cell division. After 10 days of high frequency watering, cambial cell division and xylem differentiation were initiated. New cell plates were formed in the phloem side of the cambium. However, the cambium was inactive when low frequency watering was supplied. Supplying water in high frequency reactivated the cambium with forming small to large vessels. In contrast, the cambium remained inactive when low frequency watering was supplied throughout the experiment. These results suggest that continuous supply of water to the soil is one of the most important factors for cambial reactivation during pre-monsoon season in subtropical trees. Furthermore, our findings of artificial watering treatments might help to better understand the response of cambium to changes in precipitation patterns under natural conditions, allowing us to learn more about how cambium of subtropical trees responds to climate change.

Funder

Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Reference81 articles.

1. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

2. Funada R, Yamagishi Y, Begum S, Kudo K, Nabeshima E, Nugroho WD, Rahman MH, Oribe Y, Nakaba S (2016) Xylogenesis in trees: from cambial cell division to cell death. In: Kim YS, Funada R, Singh AP (eds) Secondary xylem biology—origins, functions and applications. Academic Press, Elsevier, pp 25–58

3. IPCC (International Panel on Climate Change) (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, et al (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

4. IPCC (International Panel on Climate Change) (2018) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, et al (eds) Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press, Cambridge, New York, pp 3-24

5. Rahman MH, Kudo K, Yamagishi Y, Nakamura Y, Nakaba S, Begum S, Nugroho WD, Arakawa I, Kitin P, Funada R (2020) Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Sci Rep 10:14341

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3