Effect of side-chain length in lignin model compound on MnO2 oxidation: comparison of oxidations between C6-C2- and C6-C1-type compounds

Author:

Sun Shirong,Yokoyama TomoyaORCID

Abstract

AbstractMonomeric C6-C2-type lignin model compounds with a p-hydroxyphenyl (H), guaiacyl (G), syringyl (S), or p-ethylphenyl (E) nucleus (1-phenylethanol derivatives) were individually oxidized by MnO2 at a pH of 1.5 and room temperature. The results were compared with those of the corresponding C6-C1-type benzyl alcohol derivatives obtained in our recent report to examine the effect of the presence of the β-methyl group on the oxidation. The presence decelerated the oxidation regardless of the type of aromatic nucleus, although it did not change the order of the oxidation rates: G > S >> H > E. This deceleration results from the steric factor of the β-methyl group in the C6-C2-type compounds. The MnO2 oxidations of the corresponding C6-C2-type compounds deuterated at their α-(benzyl)positions showed that the magnitudes of the kinetic isotope effects are smaller than those observed in the oxidations of the corresponding C6-C1-type compounds, regardless of the type of aromatic nucleus. These smaller magnitudes suggest that the presence of the β-methyl group shifts the initial oxidation mode of MnO2 from direct oxidation of the benzyl position to one-electron oxidation of the aromatic nucleus. Only the S-type compounds afforded products via degradation of the aromatic nuclei.

Funder

Bio-oriented Technology Research Advancement Institution

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3