Author:
Tahiri Youssef,Karpe Fredrik,Tan Garry D,Cianflone Katherine
Abstract
Abstract
Background
We evaluated plasma ASP and its precursor C3 in type 2 diabetic men with/without rosiglitazone (ROSI) treatment compared to healthy non-obese men. We tested (1) whether plasma ASP or C3 are altered postprandially in subcutaneous adipose tissue or forearm muscle effluent assessed by arteriovenous (A-V) differences in healthy lean men and older obese diabetic men and (2) whether treatment with ROSI changes the arteriovenous gradient of ASP and/or C3.
Methods
In this ongoing placebo-controlled, crossover, double-blinded study, AV differences following a mixed meal were measured in diabetic men (n = 6) as compared to healthy men (n = 9).
Results
Postprandial arterial and adipose venous TG and venous NEFA were increased in diabetics vs. controls (p < 0.05–0.0001). ROSI treatment decreased postprandial arterial TG (p < 0.001), adipose venous NEFA (p < 0.005), reduced postprandial glucose (p < 0.0001) and insulin concentrations (p < 0.006). In healthy men, there was no change in postprandial C3, but an increase in adipose venous ASP vs. arterial ASP (p < 0.02), suggesting ASP production, with no change in forearm muscle. In older, obese diabetic subjects, arterial C3 was greater than in controls (p < 0.001). Arterial C3 was greater than venous C3 (p < 0.05), an effect that was lost with ROSI treatment. In diabetics, postprandial venous ASP was greater than arterial (p < 0.05), indicating ASP production, an effect that was lost with ROSI treatment (p < 0.01).
Conclusion
Increased postprandial venous production of ASP is specific for adipose tissue (absent in forearm muscle). Increased postprandial C3 and ASP in diabetic subjects is consistent with an ASP resistant state, this state is partially normalized by treatment with ROSI.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)
Reference39 articles.
1. Gong D, Yang R, Munir KM, Horenstein RB, Shuldiner AR: New progress in adipocytokine research. Current Opinion in Endocrinology & Diabetes 2003, 10: 115-121. 10.1097/00060793-200304000-00004
2. Kalant D, Maslowska M, Scantlebury T, Wang H, Cianflone K: Control of lipogenesis in adipose tissue and the role of Acylation Stimulating Protein. Canadian Journal of Diabetes 2003, 27: 154-171.
3. Jazet IM, Pijl H, Meinders AE: Adipose tissue as an endocrine organ: impact on insulin resistance. The Netherlands Journal of Medicine 2003, 61: 194-212.
4. Havel PJ: Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Current Opinion in Lipidology 2002, 13: 51-59. 10.1097/00041433-200202000-00008
5. Cianflone K, Sniderman AD, Walsh MJ, Vu H, Gagnon J, Rodriguez MA: Purification and characterization of acylation stimulating protein. Journal of Biological Chemistry 1989, 264: 426-430.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献