Multi-omics profiling reveals potential alterations in rheumatoid arthritis with different disease activity levels

Author:

Chen Jianghua,Li Shilin,Zhu Jing,Su Wei,Jian Congcong,Zhang Jie,Wu Jianhong,Wang Tingting,Zhang Weihua,Zeng Fanwei,Chang Shengjia,Jia Lihua,Su Jiang,Zhao Yi,Wang Jing,Zeng Fanxin

Abstract

Abstract Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory disease, the pathogenesis of which is not clear. Clinical remission, or decreased disease activity, is the aim of treatment for RA. However, our understanding of disease activity is inadequate, and clinical remission rates for RA are generally poor. In this study, we used multi-omics profiling to study potential alterations in rheumatoid arthritis with different disease activity levels. Methods Fecal and plasma samples from 131 rheumatoid arthritis (RA) patients and 50 healthy subjects were collected for 16S rRNA sequencing, internally transcribed spacer (ITS) sequencing, and liquid chromatography-tandem mass spectrometry (LC–MS/MS). The PBMCS were also collected for RNA sequencing and whole exome sequencing (WES). The disease groups, based on 28 joints and ESR (DAS28), were divided into DAS28L, DAS28M, and DAS28H groups. Three random forest models were constructed and verified with an external validation cohort of 93 subjects. Results Our findings revealed significant alterations in plasma metabolites and gut microbiota in RA patients with different disease activities. Moreover, plasma metabolites, especially lipid metabolites, demonstrated a significant correlation with the DAS28 score and also associations with gut bacteria and fungi. KEGG pathway enrichment analysis of plasma metabolites and RNA sequencing data demonstrated alterations in the lipid metabolic pathway in RA progression. Whole exome sequencing (WES) results have shown that non-synonymous single nucleotide variants (nsSNV) of the HLA-DRB1 and HLA-DRB5 gene locus were associated with the disease activity of RA. Furthermore, we developed a disease classifier based on plasma metabolites and gut microbiota that effectively discriminated RA patients with different disease activity in both the discovery cohort and the external validation cohort. Conclusion Overall, our multi-omics analysis confirmed that RA patients with different disease activity were altered in plasma metabolites, gut microbiota composition, transcript levels, and DNA. Our study identified the relationship between gut microbiota and plasma metabolites and RA disease activity, which may provide a novel therapeutic direction for improving the clinical remission rate of RA.

Funder

The Key Projects fund of Science & Technology Department of Sichuan Province

Scientific Research Fund of Sichuan health and Health Committee

Innovative Scientific Research Project of Medical in Sichuan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3