Abstract
Abstract
Background
Reduced renal clearance of uric acid is a major contributor to hyperuricemia. The aim of this study was to examine clinical and genetic variables associated with fractional excretion of uric acid (FEUA).
Methods
Participants (with and without gout) in the Genetics of Gout in Aotearoa study with available genotyping and FEUA data were included (n = 1713). Ten FEUA-associated loci detected within a genome-wide association study for serum urate in a European population were analysed. A polygenic score for FEUA was calculated in each ancestry group to model the cumulative effects of the genetic variants on FEUA. Associations between FEUA and both clinical variables and polygenic score were tested using linear regression models.
Results
The mean (SD) FEUA was 5.13 (2.70) % in Eastern Polynesian participants, 4.70 (5.89) % in Western Polynesian participants, and 5.89 (2.73) % in New Zealand European participants. Although association with FEUA was observed for SLC2A9 rs11942223 in New Zealand European participants (P = 2.39 × 10− 8), this association was not observed in Eastern or Western Polynesian participants. The polygenic score was positively associated with FEUA in all ancestry groups. In New Zealand European participants, body mass index, diuretic use, polygenic score, and male sex were associated with FEUA and explained 22% of FEUA variance in the regression model. In Eastern and Western Polynesian participants, the tested variables explained 10% and 4% of FEUA variance respectively.
Conclusions
Both clinical and genetic variables contribute to renal clearance of uric acid. SLC2A9 exerts effects on FEUA variance in people of European ancestry, but not in those of Polynesian ancestry. There is a large unexplained variance in FEUA, particularly in people of Polynesian ancestry.
Funder
Health Research Council of New Zealand
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Pascual E, Perdiguero M. Gout, diuretics and the kidney. Ann Rheum Dis. 2006;65(8):981–2.
2. Kannangara DRW, Ramasamy SN, Indraratna PL, Stocker SL, Graham GG, Jones G, et al. Fractional clearance of urate: validation of measurement in spot-urine samples in healthy subjects and gouty patients. Arthritis Res Ther. 2012;14(4):R189.
3. Yamashita S, Matsuzawa Y, Tokunaga K, Fujioka S, Tarui S. Studies on the impaired metabolism of uric acid in obese subjects: marked reduction of renal urate excretion and its improvement by a low-calorie diet. Int J Obes. 1986;10(4):255–64.
4. Chonchol M, Shlipak MG, Katz R, Sarnak MJ, Newman AB, Siscovick DS, et al. Relationship of uric acid with progression of kidney disease. Am J Kidney Dis. 2007;50(2):239–47.
5. Jutabha P, Anzai N, Wempe MF, Wakui S, Endou H, Sakurai H. Apical voltage-driven urate efflux transporter Npt4 in renal proximal tubule. Nucleos Nucleot Nucl. 2011;30(12):1302–11.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献