Author:
Ramírez Melanie,Ortiz Mario I.,Guerenstein Pablo,Molina Jorge
Abstract
Abstract
Background
Studying the behavioral response of blood-sucking disease-vector insects to potentially repellent volatile compounds could shed light on the development of new control strategies. Volatiles released by human facial skin microbiota play different roles in the host-seeking behavior of triatomines. We assessed the repellency effect of such compounds of bacterial origin on Triatoma infestans and Rhodnius prolixus, two important vectors of Chagas disease in Latin America.
Methods
Using an exposure device, insects were presented to human odor alone (control) and in the presence of three individual test compounds (2-mercaptoethanol, dimethyl sulfide and 2-phenylethanol, the latter only tested in R. prolixus) and the gold-standard repellent NN-diethyl-3-methylbenzamide (DEET). We quantified the time the insects spent in the proximity of the host and determined if any of the compounds evaluated affected the behavior of the insects.
Results
We found volatiles that significantly reduced the time spent in the proximity of the host. These were 2-phenylethanol and 2-mercaptoethanol for R. prolixus, and dimethyl sulfide and 2-mercaptoethanol for T. infestans. Such an effect was also observed in both species when DEET was presented, although only at the higher doses tested.
Conclusions
The new repellents modulated the behavior of two Chagas disease vectors belonging to two different triatomine tribes, and this was achieved using a dose up to three orders of magnitude lower than that needed to evoke the same effect with DEET. Future efforts in understanding the mechanism of action of repellent compounds such as 2-mercaptoethanol, as well as an assessment of their temporal and spatial repellent properties, could lead to the development of novel control strategies for these insect vectors, refractory to DEET.
Funder
COLCIENCIAS
Facultad de Ciencias, Universidad de los Andes
Agencia Nacional de Promoción Científica y Tecnológica
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference76 articles.
1. WHO. Vector-borne diseases. Geneva: World Health Organization; 2019. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Accessed 13 Aug 2019.
2. Centers for Disease Control and Prevention (CDC). Avoid bug bites. 2019. https://wwwnc.cdc.gov/travel/page/avoid-bug-bites. Accessed 14 Aug 2019.
3. Environmental Protection Agency United States. Product performance test guidelines OPPTS 810.3700: Insect repellents to be applied to human skin. 2010. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100LBO3.txt. Accessed 17 June 2019.
4. Leal WS. The enigmatic reception of DEET—the gold standard of insect repellents. Curr Opin Insect Sci. 2014;6:93–8.
5. White G, Moore S. Terminology of insect repellents. In: Debboun M, Frances SP, Strickman DA, editors. Insect repellents handbook. 2nd ed. Boca Raton: CRC Press; 2014. p. 3–30.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献