Schistosoma japonicum EKLF/KLF1 is a potential immune target to tackle schistosomiasis

Author:

Piao Xianyu,Jiang Ning,Liu Shuai,Duan Jiamei,dai Hang,Hou Nan,Chen Qijun

Abstract

Abstract Background Interruption of parasite reproduction by targeting migrating schistosomula is a promising strategy for managing schistosomiasis. Hepatic schistosomula proteins previously identified based on second-generation schistosome DNA sequencing were found to hold excellent potential for schistosomiasis japonica diagnosis and as vaccine candidates. However, there are still many unknown schistosomula proteins that warrant further investigations. Herein, a novel schistosomula protein, the Schistosoma japonicum erythroid Krüppel-like factor (SjEKLF/KLF1), was explored. Methods Sequence alignment was carried out to detect the amino acid sequence characteristics of SjEKLF. The expression profile of SjEKLF was determined by western blot and immunofluorescence analysis. Enzyme-linked immunosorbent assay was used to determine the antigenicity of SjEKLF in hosts. Mice immunised with recombinant SjEKLF were challenged to test the potential value of the protein as an immunoprotective target. Results SjEKLF is defined as EKLF/KLF1 for its C-terminal DNA-binding domain. SjEKLF is mainly expressed in hepatic schistosomula and male adults and located within the intestinal intima of the parasites. Notably, high levels of SjEKLF-specific antibodies were detected in host sera and SjEKLF exhibited outstanding sensitivity and specificity for schistosomiasis japonica immunodiagnosis but failed to distinguish between ongoing infection and previous exposure. In addition, SjEKLF immunisation reduced the infection in vivo, resulting in decreased worm and egg counts, and alleviated body weight loss and hepatomegaly in infected mice. Conclusions Overall, these findings demonstrate that SjEKLF is critical for the infection of S. japonicum and may be a potential target to help control S. japonicum infection and transmission. Graphical Abstract

Funder

Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences

Fundamental Research Funds for the Central University

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology,General Veterinary

Reference43 articles.

1. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800.

2. Keenan JD, Hotez PJ, Amza A, Stoller NE, Gaynor BD, Porco TC, et al. Elimination and eradication of neglected tropical diseases with mass drug administrations: a survey of experts. PLoS Negl Trop Dis. 2013;7:e2562.

3. Barnett R. Schistosomiasis. Lancet. 2018;392:2431.

4. Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet. 2014;383:2253–64.

5. McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou XN. Schistosomiasis. Nat Rev Dis Primers. 2018;4:13.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3