A barcoding pipeline for mosquito surveillance in Nepal, a biodiverse dengue-endemic country

Author:

Hartke JulianeORCID,Reuss Friederike,Kramer Isabelle Marie,Magdeburg Axel,Deblauwe Isra,Tuladhar Reshma,Gautam Ishan,Dhimal Meghnath,Müller Ruth

Abstract

AbstractBackgroundVector-borne diseases are on the rise on a global scale, which is anticipated to further accelerate because of anthropogenic climate change. Resource-limited regions are especially hard hit by this increment with the currently implemented surveillance programs being inadequate for the observed expansion of potential vector species. Cost-effective methods that can be easily implemented in resource-limited settings, e.g. under field conditions, are thus urgently needed to function as an early warning system for vector-borne disease epidemics. Our aim was to enhance entomological capacity in Nepal, a country with endemicity of numerous vector-borne diseases and with frequent outbreaks of dengue fever.MethodsWe used a field barcoding pipeline based on DNA nanopore sequencing (Oxford Nanopore Technologies) and verified its use for different mosquito life stages and storage methods. We furthermore hosted an online workshop to facilitate knowledge transfer to Nepalese scientific experts from different disciplines.ResultsThe use of the barcoding pipeline could be verified for adult mosquitos and eggs, as well as for homogenized samples, dried specimens, samples that were stored in ethanol and frozen tissue. The transfer of knowledge was successful, as reflected by feedback from the participants and their wish to implement the method.ConclusionsCost effective strategies are urgently needed to assess the likelihood of disease outbreaks. We were able to show that field sequencing provides a solution that is cost-effective, undemanding in its implementation and easy to learn. The knowledge transfer to Nepalese scientific experts from different disciplines provides an opportunity for sustainable implementation of low-cost portable sequencing solutions in Nepal.Graphical Abstract

Funder

Bill and Melinda Gates Foundation

Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference64 articles.

1. WHO. Vector-borne diseases. 2020. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Accessed 16 Jun 2021.

2. Chala B, Hamde F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: a review. Public Health Front. 2021;9:1–10.

3. Rosenberg R, Lindsey NP, Fischer M, Gregory CJ, Hinckley AF, Mead PS, et al. Vital signs: trends in reported vector-borne disease cases—United States and territories, 2004–2016. Morb Mortal Wkly Rep. 2018;67:496–501.

4. Dhimal M, Kramer IM, Phuyal P, Budhathoki SS, Hartke J, Ahrens B, et al. Climate change and its association with the expansion of vectors and vector-borne diseases in the Hindu Kush Himalayan region: a systematic synthesis of the literature. Adv Clim. 2021;12:421–9.

5. Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int J Parasitol. 2005;35:1309–18.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3